

Acoustical Society of America

FOUNDED 1929

OPIICRRS

President
Riciand H, Bolt
Acouatica Laboratory
Massachusetts Institute of
Technology
Cumbrided 39, Massachusetts President-Eleal
Putip M, Morst
Massachusetts Institute of Technology
Cambridge 30, Massachusetts Vice President
Leo L. Bmanek
Massachusetts Inatitute of Technology
Cambridge 39, Masmelusetts Secretary
Wallach Wathafall
57 East 55th Strect
New York 22, New York
Treasurer

Grohor M. Nixon
Natlonal Broadcating Company
30 Rockefeller Plaza
New York, New Yorlc
Editor
Floyd A. Fiugbtoni
3318 Fesaenden Street, NW,
Wayhiugton B, D. C. HXECUTKVE COUNCLL

C. P. Dontr

University of Texas
Austin, Texau
Incianto K. Cook
National Bureau of Standards
Room 4, Weat Building
Washington 25, D. C.
Lho P. Deleasso
Unlveraity of Californla
Los Angeles, Callfornia
W. P. Mason

Bell Telephone Laboratories
Murray Hill, Now Jersey
J. P. Maxpield
U. S. Navy Electronics Labboratory

San Diego 52, California
Hale j. Saink
The Celotex Corporation
120 South La Salle Strect Chicago 3, Iltinois
The officers ars also members of the Extcutive Council

TTar Acoustical Socirty of Aamrica was founded in 1929 to fincrease and difuse the knowledge of acoustics and promole its practical applicationa Any person or corporation interested in ncoustica shall be eligible for membere ship in this society.

Annual Dues

Fellows and members, $\$ 8.00$; Associates, $\$ 6.00$; Sustaining mmbers, $\$ 50$
Further information concerning membershlp together with application blanks may be obtained by addressing the Sceretary of the Society.

The Journal of the Acoustical Society of America EDITORIAL BOARD
Floyd A. Firmstoni; Editor

 24, New York.

Back Numbera
Compilete seth Vol. 1, October, 1929-Vol. 20, November, 1948-\$190.00
Yrafly back number tale: $\$ 11.00$
Slugle copica: $\$ 7,90$ cach, publalaned prłor to Jantary, 1947; $\mathbf{\$ 2 . 0 0}$ exch thereafter. Cutnulative Index, 1929-19.50; \$4.50,

Subscriptions and oridera for back numbers should be addreased to Prince and Lemon Streets, lancaster, Penneylvania, or to the American institute of Physics, 57 Enst 55 Street, New York 22, New York.
Changes of address should be addressed to the Business Manager.

THE JOURNAL of the Acoustical Society of America

Vol. 21, No. 4
JULY, 1949

Sustaining Members

The Acoustical Society is grateful for the financial assistance being given by the Sustaining Members listed below and invites applications for sustaining membership from other individuals or corporations who are interested in the welfare of the Society.
Massa Laboratories, Inc., Cleveland, Ohio
The Brush Development Company, Cleveland, Ohio
The H. A. Erf Acoustical Company, Cleveland, Ohio
Raytheon Manufacturing Company, Newton, Massachusetts
The Astatic Corporation, Conneaut, Ohio
Shure Brothers Incorporated, Chicago, Illinois
Jensen Manufacturing Company, Chicago, Illinois
Industrial Sound Control, Hartford, Connecticut
Edo Corporation, College Point, New York
The Harold E. Shugart Company, Inc., Los Angeles, California
Dictograph Products, Inc., Jamaica 1, New York
Altec, Hollywood, California
Phillip Sills Sound Engineering, Montreal, Canada
Sound Apparatus Company, Sterling, New Jersey
Any person or corporation contributing lifty Dollars ($\mathbf{\$ 5 0 , 0 0}$) or more annually may be elected a Sustaining Member of the Acoustical Society and will receive one subscription to the Journal for the year and a yearly membership certificate suitable for framing. Application for membership may be made to Secretary Wallace Waterfall.

The Twentieth Anniversary Meeting

"Research is the effort of the mind to comprehend relationships which mo one hits previonsly known, and in its finest exemplifications it is practical as well as theoretical; treneding always toward worthwhile relationships, deatanding common sense as well as uncommon ability,"-Harold De Forest irnold.

Inscription in the foyer of Arnold Auditoriam
at Bell Telephone Laboratories, Murray IIII, Netv, ,Iersey.
"The Auniversary meeting falfilled all expectations in loeing successfal and interesting. There was a record-breaking attendance, which furnished opportunities for renewal of friundships among members, with many discussions of problens ships atmong members, With minly discussions of problems finly 1939 issuce in describing the Tenth Anniversany neeting July 1939 issue in describing the Tenth Annjversury meeting
held in the Hotel Pennsylvania in New York, but the statement is erfally applicable to the Twentieth Anniversiry mecting held in the Hotel Statler in New York, Just as this is the sanne hotel tuder a different name, the scotsitical Society is the stme virile organization under the leaderslip of different officers, except Wallace Waterfill, who has served with distinction as Secretary for the full twenty-year puriod. The registration for our Twentieth Anniversary meeting totaled 417 as compared with 290 at the Tenth Nnniversary meeting, Our membership now totala about. 1.500 as compared with 700 ten years ago.
The theme of the meeting wha Aconstics and Man, the papers being classified according to function in the following ategories; Acoustica in Commanication; deotstics in the Arts; Acoustics in Comfort and Safety; and Acoustics in Research. Invited papers on thess subjects were presented in addition to the contributed papers.
A founders' luncheon was attended by a considerable fric tion of those farseeing nembers who twenty yearn ago assembled on the roof of the Bell Telephane Laboratories at 463 Weat Street for a photograph after having completed the plans for the organization of the Acoustical Sociuty of America. This group was photographed again at the recent luncheon, 00 years older, 20 db wiser (wee the following two phges). Thase founders could be identified at the recent meeting by their white carmationa and jusitifiable air of pride.

Since the Society sot itn startat de lell Telephone lathorittories, it was appropriate that Friday should be spent in it (oar of the beatutifl nuw Bell Teluphone Jaboratories at Murray Hill, New Jertiey, Half of the day was spent in visitings varinus portions of the daboratory devoted to aconstical research, while the other half cotsisted in a series of demonstration lectures in the Amold Auditoritum. These demonstrations, listed in the program at the end of this isste, were executed with that beanty and flourish which is seldom seen except att the Bell Laboritories, Far instance, we all know that sound will travel around eurves inside of a tube, but: Wiaston E: Kock ahowad somd following around a carve along the outside of a rod covered with disks abont the size a penny and about a half-inch atoret.

Following the dinner, Dr. Harvey fleteder, first presitlent of the Society, was presented with a Certificate of Honoriary Mentueralify following remarks by his onte-time ithdent, Dr, Vern O. Etudsen (see page 203). 'lhis was followed by divertissement conducted by the society's humoribt and court jester, I'at: Norris, who outined the many advances in atconstics made daring the twenty years that he fats been a member, starting with the open window unit of sound alsorption and ending sith the vastly improved motern sotud recordiug systems which now reputire three turatable speeds instead of the one which formerly' sutinced.

To Irogram Chairman Iarold Burris-Nleger and his unusanlly Jirge Drogram Committee, we express our appreciation for arranging this memoratble occasint. May we spectlate materentun of aconstical science on the occationst of ont ont hatmdredeh or one thousindth anniversiaries?

THENTETH ANNOERSARY MEETING

Dinner, Twemtien Amiversary Meetimb, Iotel Stater, New York, May 6, 19:4

Presentation of Certificate of Honorary Membership

to
Doctor Harvey Fletcher

Harvey Fletcher

Remarks of Dr. Vern O. Kinudsen on the Occasion of the Presentation of the Certificate of Honorary Membership to Dr. Fletcher at the Aconstical Society Dinner on May 6, 1949.

HARVEY FIETCHER, distinguished scientist and engineer, trail-blazing investigator of the mature of speech and hearing, was born of pioneer parents in Provo, Utal, September 11, 1884.
Dr. Fleteher acquired at an early age the art of fishing-and in no mean degree! 'The native trout in mountain streams can usually see, hear, or otherwise sense the unwary angler, but they don't sense Uncle Harvey until they are on the hook! Once, when returning to camp, he lad not only his creel-a California orange crate-bulging with trout, but, hung from his shoulder, a coyote that had threatened violence, and over which Harvey, with the aid of his homting knife, had won a decision.
Dr. Fleteher received his B.S. degree at the Brigham Young University in 1907, and his Ih.ID. at the University of Chicago in 1911. Since then, honorary degrees have been conferred upon him by Columbia University, Case Institute of 'Techoology,

Kenyon College, Stevens Institute of Technology, and the University of Utah.
From 1911 until 1916 Dr. Fletcler was Professor of Physics at B.Y.U.: in fact, he was the staff of the Department-and for gook measure he taught courses in Differential Equations, Vector Analysis, and Theology. All of the lower and division physics, and most of the apper division mathematics that Carl Eyring, Wayne Hales, and 1-among many others-learned at B.Y.U., were tanght by Harvey Fletcher. If we learned too little, it was not because Fleteler spread his teaching too wide and thin. He was a profound and proficient teacher in such diverse courses as Electron Physics, Kinetic Theory, Electricity and Magnetism, Spectroscopy, and Thermodymamics. In order to carry his teaching load of much more than 20 hours a week, supplemented with an active research program and with extra-curricular services to Boy Scouts and a variety of other civic and clurch organizations, it

became necessary for Dr. Fleteher to schedule his first class at 6:45 A.m.

In 1916, he joined the research staff that later became the Bell Telephone Laboratorics. His contributions and leadership in acoustical research during the ensuing thirty-three years are so well and so highly appreciated by the members of this Society as to make trite any remarks of mine tonight about his researches in acoustics. Most of his published works, beginning with his doctoral dissertation on "A Verification of the Theory of Brownian Movements and a Direct Determination of the Value of NE for Gaseous Jonization, ${ }^{\prime \prime}$ and continuing through an epochal series of scientific papers dealing with loudness, auditory masking, speech, music, and theories of hearing, bear the most distinguished of all hall marks-a dark band around the eclges of the pages-a band that will become even more conspichous as succeding generations of scholars leave their finger marks on these honored pages.
Dr, Fletcher has received many scientific honors. I already have referred to the honorary degrees that have been conferred upon him. But hat is not all. He is a member of the National Academy of Sciences, honorary member of the American Otologieal Society, and a recipient of the Louis Edward Leve medal. He was President of the Utah Academy of Science in 1915-16, of the American Society for the Hard of Hearing in 1929-30, and of the American Physical Society in 19-4. But he is lest known to this audience as the first President of the Acoustical Sociely of America-ind in the minds and hearts of the members of this Society he is, I amm confident, its first and most distinguishod member.

[^0]Professor Wallace C. Sabine, 1868-1919, pioneer of the science of architectural acousties.

16 June 1949

Mrs. Wallace C. Sabine
348 Mardborough Street
Boston, Massachusetis
Dear Mrs, Sabine:
The Acoustical Society of America, on the occasion of its Twentieth Ammersary, wishes to extend cordial greetings to you in honor of the great contributions of Wallace Clement Sabine to the science of acoustics.

The pioneering work of Professor Sabine laid the foundations for important scientific and engineering advances in the design of anditoriums for better hearing of speech and music, Out of his achiever ments have come results of great significance to
several arts and professions. His name is recognized in architecture, music, communications and public health, as well as in many industrial fields. Mankind has benefitted from his teachings which led to the control of noise and the enhancement of musical sounds in rooms. The formation of our Society twenty years ago was ingpired in large measure by widespread applications of the principles of acoustics which were first formulated by Professor Sabine.

This formal expression of our sentiment was read to the members of the Society at their Twentieth Anniversary banquet, 6 May 19.40 , and was enclorsed by a unanimous rising vote. The memory of Protessor Sabine will always live as a guide and inspination to all who purste the field of acoustics.

Very sincerely yours,
Richard H. Bolt

Vern O. Knudsen

ACOUSTICS has loug been a servant of comfort and safety. The mere mention of musical instruments, telephony, radio, hearing aids, noise abatement, souncl-insulation, room acoustics, and paycho-acoustics reminds us of the diverse and important contributions acoustics has made to human comfort. Similarly, a refurenee to the whistle, the siren, and the fog-horn will remind us of advances in safety that come from acoustical research and technology. Often the need for improvement of these safety devices hats led to significant fundamental research. Thus, the researches of John Tyndall, Joseph Henry, and Lotis V. King on the propagation of sound in the atmosphere stemmed from the need for better and safer signaling between sluips in for.
I have no novel scientific discovery to report to this Society today. Furthermore, ! shall make no attempt to review or praise what this Society has done in behalf of human comfort and safety, for which neglect I might be rightly blamed on this felicitous occasion of the Society's Twentieth Anniversary, I shall attempt, rather, to make a plea, supported by relevant data and by references to actual accomplishments in certain European countries, for quiet surroundings where people live, work, or seek refuge from the din of homo mechanicus.
1 shall begin by referring to a chart of sound

Acoustics in Comfort and Safety
 Vran O. Knudsian
 Unirersity of California, Los Andeles, California (Received May 11, 1949)

levels of common noiscs, including many that trespass beyond all reasonable bounds of comfort or even safety. (See Fig. 1.) Some of these data are from published reports and charts; others are selected from an extensive series of measurements I made with the new pocket-size Scott meter which I carried with me on a recent tour of Europe and a motor trip from New York to Savamala to Los Angeles.

Most of the soumd levels in Figg. 1 are "spot" or "short-time average" readings, and no attempts were made to determine "long-time averages" or standard deviations. The standard deviations are given for a few types of location, namely for residences, offices, stores, and factories; these were oltained by Seacord of Bell Telephone Laboratorics, and are based on several thousand spot realingsi, ${ }^{\text {t }}$
The level of $94 \mathrm{~d}_{3}$ given for the Paris Metro (sulsway) is the average value in eight different first elass cars traveling at normal operating speeds. The actual readings in the different cars ranger from 86 to 100 db .
The level of 102 dl for the Lexington Avenue bus-the greatest traffic noise encountered during a recent reconnaissance of New York-was taken on the sidewalk at an estimated distance of 12 fect from the bus, which was accelerating toward its iD. F. Seacord, J. Acouts, Soc. Am. 12, 183-187 (1940).
maximum speed. During comparative lulls in traffic at this site, the level dropped to 80 db .

The level of 65 db in the 4 th floor hotel room in Dallas, Texas, was measured during the passing of street cars, which was oceurring about 10 percent of the time from $6: 00$ a.m. until midnight. The window was open about 12 inches during these measurements, Lavels in the room ranged from 65 to 68 db for different street cars, dropened to 50 di) during traffic lulls, but mounted to 72 db for a passing truck and to 78 db for a passing airplane.

Although the average sound level of the noise in the ninth tloor guest room in one of New York's most exclusive hotels was only 54 db (with window open 2 inches), the level exceeded 65 (b) 49 times during the hour from midnight to $1: 00 \mathrm{a}, \mathrm{m}$.; furthermore, and contrary to popular opinion and the assurances of the room clerk at this hotel, there is nearly as much traffic noise in the fourteenth floor rooms as in the ninth or even fourth-the average sound level on the fourth floor was only 3 db greater than that on the ninth floor, and there was no observable difference between the average levels on the ninth and fourteenth floors.
The valve-type toilet, which roared to 88 db at cach fushing, was in a modern hotel in the South, recommended by a well known travel authority. Furthermore, the "sound-insulation" of the waills of the bathroom was so poor that the sound level in an adjacent guest room was 64 db .
The 118 db level in the electrical substation, which had been augmented to this high level by conversion from 50 - to 60 -cyele operation, was so great that it was regarded as a healdh bazard. The men who worked in the station complained of temporary deafness, tinnitus, dizainess, and other vestibular symptoms, Some of the men maintained that they could not hear ordinary conversation for several bours after a day's exposure to the noise. I experienced a temporary timitus in my left ear after a two-hour exposure, and was aware of a loss of hearing for two or three hours after leaving the noise.

It is interesting to compare these existing typucal sound levels of Fig, 1 with a table of inceptable Sound Levels for different types of rooms which Dr. Cyril Harris and I are proposing in a book now in press, Acouslical Design in Architecture (see Table II). These proposed levels are based on objective as well as subjective findings in rooms that are free from complaints or even acclaimed as highly satisfactory. The levels are somewhat lower than the comparable mean values reported by Seacord, and are much lower than most of the selected ones given in Fig, 1.

Suppose it is required to provide residential rooms laving an ambient noise level of not more than 40 db at a site such as 44 ch and Lexington Avente,

New York, where the noise level from the busses may read levels of 102 dt at it distance of 12 feet. Suppose, further, that the minimum distance from the busses to the rooms in guestion is 48 fect, at which distance the noise level has been reduced 12 db , that is, to 90 dl, which is assumed to be the maximum level of noise incident upon the residential rooms. Then the reduction in sound level that must be provided by the combined effects of the insulation of the walls and the absorption of the interior of ench room is $90-40$, or 50 clb . This would require cosily' construction, with few or no windows, and almost certainly no open windows. Practically, it would be mucla more feasille to establish traffic regulations that would reduce existing traffic noise by about 10 db. A moderate amount of acoustical designing and gadgetry, including some suitable sound filters, would suffice to reduce this tralfic noise at least $10 \mathrm{dll}_{\text {a }}$, Incidentally, the sound level of automobile horns could then be reduced 10 db , at least for city driving, without loss of signal to noise ratio, which would contribute greatly to the abatement of onc of our most anmoying noise nuisances. With such a reduction in the ambient traffic noise, the problem of constructing rooms so that the noise levels in these rooms would not exceed the acceptable values listed in Table II would be greatly simplified and could be solved practically at reasomable cost.

The levels proposed in Table If are realized, or even bettered, in most buildings recently completed in several European states. In most of these comatries, maflic moise, even in the largest cities, is of the order of 10 db less thatn it is in our large citics. But even so, building layouts and acoustical designing in these foreign countries are establishing high standards of noise control and sound insulation. Swerden has been notably progressive in these matters, especially in the construction of schools, hospitals and apartment houses. Slums and substandard housing do not exist in Sweden's urban communities-they have been replaced by modern, attractive, sotud-pronfed buiddings.

Figure 2 shows the layout of rooms in an apartment house at Finnbodia, Natcka, Sweden, which incorporates many commendable features of acoustical design. Note the separation and insulation between the bedroom of one apartment and the living room of the adjacent one; the separation between the two bedrooms and between the two living rooms in adjoining aparments; the heavy party walls (solid brick), especially between adjacent bathrooms, which provide a sound-insulation of at least 50 db ; the use of the hall as at "sound lock;" and many other apparent fentures of sound planming for the control of atoise. The entrance doors are of solid panel construction and they fit tightly in their frames so that threshold eracks are

VERN O. KNUDSEN

Fig. f: Chart of sound fevela of common noises.
eliminated. All floors above the ground level are of "floating" construction, on concrete slabs, so that impact sounds as well as air-borne sounds are thoroughly insulated, I recently visited several apartments of this general design in Sweden, and was most favorably impressed with the splendid results architects and builders have obtained in providing quiet homes, even in the low cost projects. The Swedes, Danes, Norwegians, Dutch, and

British are creating examples of good soundinsulation in their apartment houses that we can well emulate.
The effective control of noise in the buildings recently constructed in these countries is no accident. It is deliberately planned; indeed it must be in order to meet the high standards of their building codes. Thus, the Swedish Code specifies that "buildings containing dwelling and working rooms
shall be constructed according to directions given by the Buidding Authority for providing adegutate sound insulation." The directions stipulate the upper limits of somad levels that will be tolerated in different types of buiddings, and describe ways and means for attaining the required standards. A first edition of the Swedish Building Code appueared in 1946, and the second edition will appear about June, 1949, according to Dr. Ove Brand, who is one of the acoustical engineers engaged in the preparation of the new code, and to whom I am indebted for Fig. (2) and related material concerning soundinsulation in the buildings of Sweden. Table I gives the minimum sound-insulation, in db, that must be provided between rooms in hospitals, schools, dwellings, etc.
The new Swedish code will further specily that the sound level in certain rooms resulting from the transmission of sound into such rooms from roons in adjacent apartments or buildings shall not exceed the following values: (a) in very noisy districts (to be designated by the Authority), 35 db in hospitals, 40 db in residential and school buildings, and 45 db in office and business butildings; (b) in very quiet districts, 25 db in hospitals, 30 db in homes and school buildings, and 35 db in office and business buildings. These proposed levels are somewhate lower than those Dr. Harris and 1 are proposing (see Table 11), especially for hospitals, but also for other buildings in quiet districts. The Swedish ratings, the code states, are for continuous noises and not for peak sounds of short duration, such as result from the banging of doors, signals, ete.

Methods for measuring sound levels and the insulation of air-borne sounds are fairly satisfactory, although much remains to be done in perfecting present day sound level meters; methods for measuring impact sounds are less satisfactory, but techniques for providing adequate insulition of such impacts are well known and practiced in most European countries. Acoustical engineers in Great Britain and the Scandinavian countries are cooperating in devising suitable standards and techniques of measurement for the control of impact sounds. A progress report on this enterprise was reported to this Society a year ago by Dr. Jordan of Copenhagen. ${ }^{2}$
I have referred to the accomplishments of our associates across the Atlantic because I believe it will help us to go and do likewise. The problems of noise abatement and sound insulation in buiddings have not received the attention they deserve in this country. The work of the Noise Abatement Commission of New York City, with the publication in 1930 of its book City Noise, was a yood start. The National Noise Abatement Comnission also
${ }^{2}$ Vilherly L. Jordan, J. Acous, Soc. Am. 20, 595 (19:48) (n) $)$ stract anly).
deserves favorable mention for its management of yearly campaigns among our major cities. The efforts of these organizations have leen bencelicial, but much remains to be done.

It may not be the role of this Suciety to sponsor regulatory legislation for the control of city noise and of sound insulation in buildings, The provision of appropriate repulations is complicated by the existence of some 2000 building corles in the United States, mostly city or connty conles. I.ocal action probaibly is the required approach. Many of us can help our own communities undertake the necessary action. And we slould not, as individuals or as a Society, shirk our responsibility in contributing the technical information on which proper regulatory codes should be based.
As one example of the type of technical information we should exploit, I refer to the findings of Dr. Steinberg, published in City Noise. ${ }^{2}$ Steinberg found that at a distance of 23 feet the levels of 33 tifferent automolite horns, which had been submitted to the New York Noise Abatement Commission by the manufacturers of the horns, varied from 72 to 102 (i). Further tests of these horns, subjective as well as objective, indicated that, "In order to override the maximum street noise found in New York, the levels of the sounds enitted by antomobile horns should be of the order of 88 to 93 db as measured with the noise meter for a reference distance of 23 feet between horn and microphone." Fourteen of the 33 horns tested exceeded this range of levels, and only five fell below it. No doubs Steinberg's results influenced favorably the subsequent design of horns and their use by the various manufacturers of automobiles, and we know some automobile companies continued acoustical investigations of the problem. But many of us also know from recent sample measurements we have made of the sound levels of automobile

Fic. 2, Plan showing layout of rooms in one end of an apartment house, Finnhodia, Nackia, Sweden, planned for guiet living.
${ }^{3}$ J. C. Steinberg, City Noisc, pp, 161-187 (1930).

Tamle 1.

Type of Thutidug	Inmitation for Air- Barse solaisl	Inaulation fat 1-Hour-Celling Conterte	Impact Sonitacla Canatruftom of: Word
Hospitals	48 ch	(1) db	18 db
Dwellings	48 ctb	55 dl	16 cts
Scliools	4.4 ell	50 db	14 clb
Office [3uidjings	t0 dh	50 dl	42 d

Tame 1I,* Acceptable average noise Levels,

Radio, recording, and television studies	25 10 30 dil
Music rooms	301035
Legitimate theatres	30 to 35
Hospitals	35 t0 -10
Apartments, hotels, lionses	351045
Motion pieture theatres, anditoriums	$3510 \cdot 10$
Chitrches	3510.10
Classrooms, lecture rooms	35 to 40
Conference rooms, small oflices	351045
Court rooms	10 to 45
Private offices	10 to 45
Libraries	4010.45
Lange public offices, lanks, stores, ete,	45 to 55
Restaurants	50 to 55
Factories	45 to 80

*The evela slven in thata talde are "wejsltued." h.e., they are the levela
 thency-wedahting network.
horns that today many exceed the level suggested by Dr. Steinberg's study, It would be helpful to repeat the investigation made 20 years ago, and extend it to trucks, motnr coaches, street cars, airplanes, and other offencling sources of noise, It is encouraging to note that the Armour Research Foundation, cooperating with the Greater Chicago Noise Reduction Council, is making a survey of eity noise in Chicago. With the instrumentation and mieasuring tecluniques now available, such surveys and investigations can be helpful in at least three ways: (1) they provide technical data which, when properly compiled, can be used for the reduction of noise among the worst offenders; (2) they arouse a too-indifferent public to the need for codes to control noise; and (3) they furnish indispensable data for the setting up of restrictive codes which will be in the best public interest.
Even with the data now available it is possible to draft codes for a reasomable reduction of traffic noise ; for the insulation of air-borne and solid-borne noises in apartment houses, hotels, and hospitals; for the protection of the public against unnecessary and disturbing noise from such places as recreation centers, sulb-stations, airports, factories, and proving grounds; and for the protection of workers exposed to noises that are hazards to health.
Several cities in the United States have codes for the regulation of noise, but they fail to specify quantitatively the noise levels that constitute violations. For example, the ordinance for Beverly Hills, Californin, declares that it is a muisance and "unlawful for anyone to make, or cause, or permit
to be made, any unusual, loud, penetrating, boisterous, or unnecessary noise or disturbance or commotion," And in similar non-cuantitative language, the ordinance proceeds to prohibit a largo variety of domestic, business, and industrial sounds if they can be "heard distinctiy" on property other than tint: from which they emanate. The Los Angeles code requires that steam shovels, engines, and other mechanical ipparatus used for excavating, breaking of pavement, demolishing of buildings, be equippecd with muflers of approved design. Sound-proofing is required for certain places of amusement; vehicles used for vending, soliciting, or advertising can make use of horns, bells, and musical instruments for such purposes only at certain hours during the day, and provided the sounds from such equipment are of such volume and character as do not "harass or annoy persons of reasomalde sensibilities." The New York League for Less Noise, in a neat paniphlet bearing the tiele "Leess Noise-More SafetyMore Comfort," describes fifteen traffic, radio, and other toises that are against the law in the City of New York. The lirst of these is, "To sound any horn or signal device on any automobile, motorcycte, bus, strect car or other vehicle while stationary except ats a danger signal when ant approaching vehicle is appmrently out of control, or, if in motion, only ats a danger signal after or as brakes are being applied." And, after describing the other fourteen offenses in similar legalistic but non-quantitative language, the pamphatet concludes by opining that "999 times in a housand the sound of an automobile horn means 'Get out of my way-I'm coming.' "

In 1941, a Noise Abatement Commisson in loos Angeles, of which the speaker was Chairman, attempted to prepare some quantitative regulations; it drafted for the Board of Building and Safety Commissioners a proposal for a building ordinance that would require dance halls, skating rinks, bowling alleys, night clubs, and other in-door places of recreation or amusement to be enclosed by structures so designed that the over-all noise reduction between the interior of the place of amusement and ontside would be not less than 35 db . The proposal further stipulated that the sound level resulting from the noise issuing from such a building, measured at the houndaries of the lot on which the building is located, should not exceed the following values: (a) when surrounded only by business property, 75 db from 7:00 a.m. to $11: 00$ p.mı, and 65 dj from $11: 00$ p.m. to $7: 00 \mathrm{a} . \mathrm{m}$. ; and (b) when any portion of the lot boundary is adjacent to a residential zone, 70 db from 7:00 a.m. to $11: 00$ p.m., and 60 db from $11: 00$ p.m. to 7:00 a.m. Similar proposals were to have been drafted for the regulation of other noises. The war intervened, the Noise Abatement Commission was disbanded, and has not yet been reactivated.

Efforts to control noise in the interest of human comfort have a long history, and, like recent attempts, the yield per unit of effort has been small but significant. Horace (Epist, ii. 2) inveighed against the noises that harassed the man of letters in the Eternal City:
"Festinat calidus mulis gerulisque redemptor:
Torquet nume lapidem, nune ingens mochina tignum,
Tristia robisatus luctantur funera plansiris;
Hac rabiosa fugit cania, lac lutulenta ruit sus:
1 nunc, et versus tectim meditare canoros," "1
English law (Ace of 1864) allows a house-holder to send away street musicians, and to this day they are required to keep moving, alleit the motion often is at a smail's pace. James Sully, writing on Civilization and Noise in the Fortnightly Review (1878), discusses this and other legal aspects of noise control. Thus, he assures us that it is possible to restrain noise as a nuisance, and cites the "celebrated case of Soltan es, DeHeld, in whicli phaintiff obtained an injunction to restrain the ringing of bells at unseasonable hours in a chapel near his
The hot tempered contractor is hurrying about with his carriers and nules;
A mighty machine turns here a stme, lifts there a wooden bean.
Mournful funerals contend with heavy wagons [to set which makes more noise];
A mad bitch fees aver that way, il filthy sow wallows around here.
But now, along with you; I am resolved to meditate on my songs.
dwelling.". But in another case, a ruling of Lord Selborne says: "A nuisance by noise, supposing malice to be out of the question, is emphatically a question of degree. If my neighbor builds a house against a party wall next to my own, and I hear through the wall more than is agreeable to me of the sounds from his nursery or his music room, it does not follow (even if I am nervously sensitive or in infirm lealth) that I can bring an action or obtain ann injunction." Sully concludes his paper with a discouraging footnote in which be protests against a "diabolical hooter" at a factory in the university town of Oxford which "shrieks its long, piercing wail every morning at $5: 30$, and again at $6: 00$."
Recent attempts in our own country at the control of noise lyy legal action and injunction have been, so far as I know, gloomily futile. Much of this futility, I believe, is attributable to the lack of proper regulatory codes, based upon sensible but quantitative requirements. Mueh of the data for formulating such requirements has been accumalated by the members of the Acoustical Society during the past twenty years. The Society can perform a much needed public service by encouraging its members to obtain the additional needed data and to help their communities in formulating sensible standards for the control of noise. Thus can acoustics make a further contribution to comfort and safety.

Leo L. Beranels

FOR the purposes of our twentieth ammiversary meeting the activities of the Acoustical Society have been divided into four branches. The branch we are concerned with is Acoustics in Comfort and Safety. One of the topics under this heading is the quieting of dwellings. In this case our heading is particularly appropriate. Anyone who has lived in ath apartment house will testify that from the sounds of neighbors' sculablales coming through the walls one can only conclude that there is no comfort in his ownapartment and no safcty in his neighbors'.
Our daily comfort is disturbed in many waysby airplanes tlying overhead, by streetears, by auto horns, and ly the roar of trucks on the highway. As for safety, we must include the contributions of sound to medicine, to the charting of the ocean floor and to the detection of enemy submarines.

In treating these various topics, one condd describe new discoveries, or point the direction in which new development programs should head, or try to arouse interest in better enginecring and in legislation for acoustic comfort. These aspects are all vital parts of our mational activities in acoustics. Accordingly, let us treat as much of each as time will permit.

Acoustic confort in buildings where people must live in close proximity to each other is one of our greatest national needs. Unfortumately, acoustic comfort is costly, and the achievement of it would deprive many people of some conveniences sucl as a television set, a new car as often as every four years, and so forth. Strangely enough, the biggest advances toward better quieting have been made in Enghand, Holland and Sweden; countries where the income per capita is less than that in the

Acoustics in Comfort and Safety
 Jtro I. Beranek
 Acoustics Laboratory, Massarhusetts Mistitute of Technology, Cambiridge 39, Mfassachusetts

United States. The explamation for this lies in the fact that the people of these nations prefer to spend more on comfort. They spend an estimated 5 percent more of their income on housing than we do. Also, in England and Holland, large areas of housing were destroyed by war, so that new construction is being financed, at least in part, by government funds.
To insure the best in housing, the English government has appointed a group, called the "Burt Committee," to approve new building designs and to encourage novel and promising buitding construction. ${ }^{1}$ As part of this program, the Ministry of Works has expanded the activities of a World War I agency, the Building Research Station, which is locates in a suburb of London. This station does research in an integrated manner on these essentials of building: structure, thermal insulation, acoustics and lighting.
Considering the acoustics aspect alone, we find that the Building Research Station has completed an extensive survey of noise conditions in London apartment and row honses. Stated very simply, they have found that in the type of construction now used in the United States (wood stud partitions, wood flooring laid on timber joists), two out of three families complain about noise from the neighbors. The noise reduction through partitions between apartments for this type of construction is about 35 decibels. No special means is provided for reducing the transmission of impact sounds from upstairs to the apartments below. The number of complaints decreases to one for each three families if the noise reduction is increased by eight to ten decibels and if the flooring overhead is floated resiliently. For fewer than one in four complaints, 55 decibels of noise reduction between apartments must be achieved and a flonting floor plus a one-inch layer of sand poured on the laths benenth must be provided.
A survey of this type has not been made in the United States. However, the findings of the Building
${ }^{1}$ W. W. Allen, "Science is the construction of houses!" undaled parper presented before Architects Associntion in England.

Research Station sound reasonable. Some members of our laboratory at M.I.T. recently had an opportunity to investigate a new housing project in New England. A series of row houses has been constructed by an insurance company interested in long term rentals. The planning was carefuldefinitely not the result of the efforts of a get-richquick speculator. Nevertheless, the complaints from tenants about noise have been many and vociferous.
Measurement of the noise reduction between rooms of adjacent row houses showed 29 db between bathrooms, 37 db between bedrooms and 37 db between living rooms. The noise transmitted between bathrooms was completely intolerable. Both conversation and flusling sounds could be overheard. The principal leakage of sound was through the medicine cabinets which were back to back with no plaster layer between. Between bedrooms the complaint was that the sounds of closing closet doors was audible, and that speech was intelligible if peopic talked in a slightly raised voice. Between living rooms, the principal complaint was that radios were bothersome.
A quick survey in an apartment house in Cambridge, Massachusetts, confirmed these data. It is quite apparent that the 55 decibels between apartments recommented by the Buikling Research Station in England is needed. The difficulty of achieving this magnitude of noise reduction may be appreciated if we note that a six-inch cinder block wall plastered on both sides gives an attenuation of about 45 decibels. Structures providing for this amount of attenuation were described in a paper that was presented at these meetings last fall. ${ }^{2}$ At least a cavity wall made of two heavy elements is required. Research on efficient structures of lighter weight and cost is clearly indicated.
Another aspect of the work of the Building Research Station is the construction and test of full-scale trial housing units. One way in which this is accomplished is to incorporate new ideas into government-sponsored housing developments. As stated alove, govermment: also encourages the construction of novel designs by promotors. The plans for new designs are turned over to the Building Research Station for study before the construction is approved. Suggestions are made to the promotor by the scientists. If all reports are favorable, a license to build is granted to the promotor. After the builling is finished the Building Research Station performs physical measurements and from these measurements evaluates the physical suitability of the structure.
In public buildings the same types of problems arise. From the standpoint of acoustics, an important avenue of improventent is through the arehitect. Every architectural school in our country
${ }^{2}$ L. L. Beranek, J. Acouss, Snc, Am1, 21, 264-260 (19.19).
should require its graduates to take a course in building acoustics, prepared especially for them. This course should at least teach the student that good acoustics are not achieved by putting acoustic plaster on all surfaces of a room. The architect should appreciate that noisy functions should be separated from quiet ones and that this separation must be made on the drawing board at the outset of the planning. Conference rooms and auditoriums should be designed initially to produce good acoustics. This involves consideration of several major factors. The room should be shaped to guide the sound waves to all parts of the room uniformly, to eliminate echos and to prevent futter echo. Afler the basic shape has evolved, absorbing materials should be introduced to control first the reverberation time as a function of frequency, and second, the fluctuations of the decay curve. The achievement of these needs is a complex matter. The successful design of a large auditorium is a job for a specinlist, and the architect must become accustomed to employing his services just as he does those of heating, lighting and ventilating engineers.

If accompanied by a survey of the residents in these areas, it would also give us information on which conditions are tolerable and which are intolerable. These data should be assembled in steli a way that they can be studied by other municipalities. They may then serve as a basis for a national movement to make city dwelling more pleasant.
Another source of interference with our comfort is airplane noise. Airplane noise casts a blight over the community adjoining an airport. So serious has this blight been that small airfields are loented in outlying arens, This remote location results in potential Пiers losing interest in private ownership of aircraft, because of the great distances involved in getting to and from the airfield. Studies carried out before and during the war reveal that, to a first approximation, the noise produced by a propeller varies as the sum of $20 \log _{10}$ of the ratio of the horsepower plus 2.7 times each $100-\mathrm{ft}$. $/ \mathrm{sec}$. increase in propeller tip speed. These relationslips indicate that if the number of blades is doubled so that the power per blade is halved and if the propeller tip speed is reduced by albout $150-\mathrm{ft}$. $/ \mathrm{sec}$., the noise levels will drop by about 10 decibels. With this goal in mind, the National Advisory Committee of Aeronautics has contracted for the development of experimental planes with an increased number of blacles, a lower propeller rotational speed, and improved engine exhaust mufling. The results of the development have been strikingly demonstrated throughout the country. Noise level reductions of 10 decibels or more are oltanined with little or no loss of performance. In a recent demonstration in Cambridge, Massachusetts, one of these
quieted airplanes coukd not be heard alove residential street noise, until the airplane was within a few hundred feet of the listener.
One of the most serious blank spots in our knowledge of acoustics is our inability to measure noises oljectively in such a way' as to yiell readings that correlate well with our subjective reactions. For example, it would be desirable to have a meter that reads loudness, loudness level, speech interference level and annoyance of the noise, regardless of the nature of the noise. Results have been reported at these meetings which indicate that a single meter might be designed which would measure the first three quantities,
The noises that are produced outside our homes are the hardest to control. The increase in traffic in every large city has resulted in a din that borders on the intolerable. This statement is particularly true in cities where surface transportation and elevated trains are still in wide use. New York City has gradually changed from noisy to relatively quiet transportation. Their solution has been to replace elevated trains with subways and streetcars with buses or trolley buses. However, the buses in use today are still unnecessarily noisy. Levels of as higit as 100 decibels are measurerl on the sidewalk near a bus as it accelerates, One large manufacturer of buses informs me that with optional equipment, they can now reduce these levels by 10 decibels for a cost equal to less.than one percent of the cost of the bus. In Washington, D. C., the introduction of new style trolley cars has reduced the noise of surface transportation substantially. The public has properly responded to this change.

At the present time, a noise survey of Chicago is under way, A paper on this subject is being presented at these meetings. This study should reveal the principal sources and magnitude of noise in industrial and residentinl areas.

In essence, the measurement of loudness is accomplished by passing the outputs of each filter in a group of contiguous filter bands through a non-linear circuit of a special type and then summing the outputs of these filters. The non-linear circuit chosen for each frequency band should develop an output current proportional to the loudness in tones of the noise in that band. There now exists evilence that the same set of equalloudness contours may be used for any pure tone or for a bancl of noise that is not too great in width.
The speech interference level may be obtained in a similar manner. Here the outputs of a set of contiguous filter bands with selected cut-off frequencies in the speech frequancy range, are passed through a set of logarithmic amplifers. The outputs of these amplifiers are combined linearly to produce a quantity that is proportional to the speech interference level of the noise. Unfortunately, there is no in-
dication of how to appronch the problen of objective measurement of anoyance. This remains a fertile, though complex, topic for further investigation.
As a fimal topic, let us look at a few developments related to acoustics in medicine. Sound has long played an important part in the diagnosis of illness. The physician listens to the heart and lungs with a stethoscope. He thumps the chest to learn if ane lung has a different resonant frequency from the other, Obviously, a shift upward in resonant freguency would accompany a filling of that lung. A targe part of his diagnosis of the illness of each patient is based on sound. Other than improvements in the stethoscope, the acoustical scientist has offerel little to the general practitioner. I feel that this is a field in which we should attempt to apply our knowledge and skill.
The surgeon has fared slightly better in this regard, A litte later this morning, we shall hear of an acoustic aid to the detection of gallstones. Extensive researches in one of our naval hospitals have led to a sonar-type device which aids in the detection of kidney stones, gallstones, and foreign objects in the body. One of the more thrilling applications of sound in medicine has been described in a recent paper in the German literature. Here, a pair of brothers, one a doctor and the other a physicist, joined together to produce a device that aids in the detection of brain tumors. This device consists of an ultrasonic source that transmits a pencil beam of ultrasound through the head. On the opposite side of the head, a microphone receives the transnitted energy. The output of the microphone is amplified and is used to modulate a source of light. This source of light radiates on a photographic paper. By moving the transducers backward and forward in a scanning motion, at the side of the head, and simultaneously, moving the light source backward and forward above the photographic piper, a photogriphic record of the attenuation of souncl by the head is obtained which is similar to the presentation on a television screen. From the picture so obtained, distortions of the ventricles in the brain, produced by malignant growths, may be observed. This experiment, though crude at this time, points the way to much wider uses of sound for diagnostic purposes. We plan to initiate a program along these lines at M.1.'T. this summer.

Ultrasound has been used with some success for producing a warming of tissucs beneath the surface of the skin. Also, experiments on inhibiting the growth of tissue by ultrasound conditions are reported in several places in the literature.

In conclusion, if feel that acoustics will continue to play a great part in increasing comfort and safety. It is up to us, as scientists in this field, to pursue our endeavors with even greater vision and persistence.

Acoustics in Communication

Ran.iol Rows
Bell Telephome Joborratories, /ut:, Murray Jill, Nitu Jersery

Ralph Bown
beginning to establish itself in broadeasting, is television.
Before the telephone came, human beings habitually used the integrated senses of sight and hearing as their primary means of communicating with each other. The joint use of ears and eyes in thie passige of information was instinctive anduntil the invention of the telephone-was almost universal. To see how immately our hahit pattern combines aural and visual effeets one has merely to attempt sjeaking emplatically while maintaining unchanged one's facial expression and botily posture.
Dr. Bell's telephone instrument, in extending the distance of instantaneous sensory perception, divored the two senses of sight and hearing by granting the extension to only one of them. The impact on acoustics was profound. It brought into the study of acoustics an entirely new set of factors and interests. It concentrated attention on the characteristics and capabilities of the car alone, unaided by the eye, and resulted in an intensive study of these claracteristics as matters of great economic importance in the engineering of electrical transmission systems of audible frequencies. Over the past forty or fifty years acoustics and telephony
have had such a close relationship that in many divisions of these subjects they were a single study.
This is perhaps best illustrated by the fact that one of the largest and most fruitful research programs in the acoustics field was carried on by it group of scientists associated with the telephone industry. This work, which was mostly under the supervision of Harvey Fletcher, was concerned for one thing with the ways in which understandability of speech is impaired by modification of its frequency content and by changing its energy level both absolutely and in relation to accompanying sounds of an interfering character. In the course of these studies there has come about a great body of factual knowledge together with a formulation of results known as Quality Theory which makes them more available for enginecring uses.
A truly scientifie attack on the acoustics of speech and hearing required the establishment of methods of evaluation or measurement and the existence of standards of reference. In this, telephony has been of great service to acoustics because most of the instruments used have turned out to be, in essence, merely highly perfected telephone instruments, using the word instruments, in this case not in the usual narrow telephone sense of transmitter and receiver but in the broader sense of instrumentalities to include, also, amplifiers, filters, level indicators, and the like. In this work acoustics and telephony jointly set the stage for the next great advance in sound technology which was radio broadeasting.
The coming of broadcasting added another factor. Telephony thereloy became distant, one-way, mass communication as distinct from interdange of words between single inclividuals. This was a medium suited to the uses of drama and music as well as speech, and the demand for artistic fidelity of transmission becane dominant.
The precision instruments which had been developed for laboratory measurements became the operating equipment of the studio and the control room. Acousticians and electrical researchers went to work on the embryonic loudspeaker. The development of a body of art and science for dealing with the problems of the capture, trimsportation, and reproduction of musical sounds which occurred in the fifteen years just preceding the war is too recent and too well known to require detailed citation, The rejuvenation of the phonograph and the emergence of successful sound motion pictures stemmed also from this scientific development of high fidelity electroacoustic devices, which got its start in the telephone laboratory with importint contributions by Edward Wente.
The recent war brought new acoustics problems and fostered the establishment of new or enlarged laboratory groups for the study of these problems,

The subject expanded both in seope and in magnitude.
And now we lind ourselves today standing again at it time when the relation between acoustics and dectrical tratusmission is undergoing or is about to undergo another material change, The telephone spamed distances, but without vision. Now vision is literally coming back into the pieture. The entergence of television into commercial importance has-at least for broadensting-restored the selse of sighe and remited the enr and the eye of the distant observer. Now the visual medium must be studied and catered to with the muticulons precision which the aural medium has already enjoyed.
This is not to say that inconsties is to be displaced by optics, or that it is of any less importance to telephony than heretofore, or that the program of research in acoustics is of any less vital interest. luat it is undergoing reorientation and for reasons which basiestly are associated with television or at least with the same forces that have been effective in bringing about television. Spurred on by the philosophical needs of such recent transmission developments as pulse molulation, time division multiplex, and television, the basic theory of intelligence transmission, having its beginnings in the philosophy that Ralph Hartley initiated about twenty years ago, is in process of extension, revision, and perfection. 'lhis is evideneed in the recent work of Clatde Shamon, Norbert Wiener, and others.

Several pertinent items may be mentioned. Hartley's work indicated that a relation exists between the band width for a message channel and its capacity to convey intelligence. 'The wide swing frequency modulation experiments of Edwin Armstrong directed engineering attention to the interchangeability between hand width and power as alternative means of dominating the deleterious effects of interfering noise. More recently there has appeared pulse code motulation, commonly known as I'CM, by means of which any form of communication can be reduced essentially to the climensions of a simple telegraph signal of dots, dashes, and spaces. A related concept is the islea of redundancy of information transmitted which is being recognized as having powerful possibibities-for example, why devote the same anount of band width, time, and power to transmitting successively the identical signals representing a blank wall as are devoted to transmitting the changing visual detail of the like area of a human face or other object to which the blank area is adjacent?
Is it not natural to query whether there exists an analogons factor of redundancy in speech or even in music? And if so how can it be practically isolated and what uses made of it? lnformation theory analyzes athl illuminates the interrelations between these various notions and facts, and in cloing so
suggests new approaches to the study of speech and hearing. The resemblance, for example, between pulse modulation and the process of nerve trans mission by the movement of electrical pulses is so striking ats inevitably to lead to renewed and reoriented attempts to understand the fundamental nature of perception.

New developments of interest to acoustics are going on in the areas of physiological and psychological research. Despite the vast amount of measurement that, during past years, has been done on hearing, our understanding of the heating mechanism is still filled with speculations, But a great deal of brilliant work in many laboratories is bringing us cloger to a solution of some of the mysteries surrounding this subject. These include work on the ear, on signals over the nerve transmission system, on the patterns of stimulation produced in the brain, and recent advances in brain wave research.

New techniques for analysis are yielding new information concerning the structure of speech and other sounds. You will see results of some of the things which have been clone with sound analysis when you visit our laboratories tomorrow at Murray Hill, New Jersey. The flexibility of modern magnetic tape recording makes it of great value as an experimental tool. Ralph Potter's methods of presenting speech sounds in a multiplicity of dimensions as, for instance, by the sound spectrograph, are even more potent. These techniques,
when combined with the philosophical transmission ideas just mentioned, give bases for new experimental approaches to identifying the location of significant elements of speech. Present trends aro toward the treatment of speech and other sounds as patterns in both frequency and time and these patterns are being scrutinized in terms of the same basic theory of intelligence transmission that is being applied to broad band multiplex communication problems. In effect, we have new measurement and computational tools that will permit microscopic examination of the structure of speech and other sounds.

The electromagnetic wave guide of George Southworth led us into micrownve technigues which later drew upon geometrical optics for aid in solving problems of directive radio transmission. 'lhe electromagnetic wave-lengths involved are of the same order as acoustic wave-fengths and already there is the beginning of evidence that acoustics can make use of this electrical commmications technology.

An so once more, as in an earlier generation, advances over the broad front of electrical communications are bound to have a profound impatet upon acoustics. From the communications standpoint, I an inclined to predict that those who will carry on research and development in the field of acoustics for the generation to come will find it quite as exciting as it has been to those who have brought this science to its present status.

Charles Kittel

THIS talk is concerned with our knowledge of the proparation of sound waves at mierowave frequencies. There is at present no direet experimental information in this field. The highest frequency to which a crystal has been excited by electronic means ${ }^{1}$ is in the neighborlood of 1000 $\mathrm{Mc} /$ sec. or $10^{\circ} \mathrm{epss}$. The theoretical upper limit to the vilbational spectrum of a solid occurs when neighboring atoms in the lattice are vilurating 180° out of phase with each other-this corresponds to an acoustic frequency of $\sim 5 \times 10^{5} / 5 \times 10^{-8}=10^{13}$ cpss . This mode of motion has been observed as an infra-red absorption line. Information regarding the intermediate region between 10^{4} and $10^{13} \mathrm{cps}$, which occurs in thermal vibrations in solids, may be inferred from s-ray and optical scattering, infrared (Reststrahlen) absorption, and thermal conductivity at low temperatures. ${ }^{3}$
Electronit: power sources are available up to around $50,000 \mathrm{Mc} / \mathrm{sec}$., so that one may say that ultrasonic work is lagging behind available power supplies by a factor of fifty in frequencs. What is the reason for this lag? Let as consider the means of conversion of electrical energy to acoustical

[^1]The Figh Frequency Region of the Acoustic Spectrum in Relation to Thermal Conductivity at Low Temperatures

Charles Kittes.
Bell Telrophone Laburntories, Afurray Mill, New Jersey
energy. In the high frequency region only quartz erystal transducers have been used. There is every reason to believe that the piezoelectric properties of quartz hold up to the infra-red; one evidence is the fict that the dielectric constant of quartz is the same in the microwave region as at lower frequencies.
What then is the problem? The problem is the mechanical tolerance on the thickness of the quarta crystal. It is pertinent to consider the situation at $3000 \mathrm{Mc} / \mathrm{sec}$. The wave-length of somed in quartz at this frequency is about $2 \times 10^{-4} \mathrm{~cm}$, or $20,000 \mathrm{~A}$, which is just 3 or 4 times the wavelenget of visible light. It is clear that aptical inlerances will be required.
A quartz crystal whose fundamental frequency is $3000 \mathrm{Me} / \mathrm{sec}$, will be only one micron thick. This is much too thin to prepare and to handle, so that it is necessary to use at thicker crystal driven in a high harmontic, for example, a $30-\mathrm{Mc} / \mathrm{sec}$. crystal (about 0.01 cm thick) driven near its hundredth harmonic. In principle nothing is lost at the same electric-field intensity by using a high harmonic of a thick crystal, but in practice there may be interference between adjacent overtones if the crystal is not of uniform thickness to a high degree of accuracy.

In receiving sound waves the erystal will only respond effectively to a beam arriving within the "nain lobe" of the crystal. If the beam arrives outside of the main lobe, different portions of the crystal face will be out of plase and the electrical pulse will be preatly weakened. For a crystal 1 cm in diameter the angular positions of the first minimum in the diffraction pattern at $3000 \mathrm{Mc} / \mathrm{sec}$. oceurs at about 0.01 degrees from the normal. This means that the aligment of the reflector relative to the transducer is very critical.

Let us now consider indirect means of obtaining information about the behavior of sound waves at microwave frequencies, At $1^{\circ} \mathrm{K}$ heat condaction in a non-metallic solid occurs principally through sound waves (phonons) of frequencies in the miero-

Fig. 1. Chart showing orders of maguitudes of quantities of interest in the hypersonic region.

F̈ıg, 2. Comparison of thermal conductivity of glasses and crystalline substances,

(OL haAS and aitrmasz)
Fig. 3. Thermal resistivity of single crystal of potassitum chloride as neastared by Biermase and te Hata. Below $5^{\circ} \mathrm{J}$ the resistivity is a function of the crystal thickness " t ".
wave range. The order of magnitude relationships are illustrated by Fig. 1 .

By analogy with the corresponding expression in the kinetic theory of gases the thermal conductivity K of a solid is written $K=\frac{1}{d}$ a.h, where c is the heat capacity per unit volume, v is average velocity of sound, and A is the mean free path of the snund waves which participate in the conductivity. The behavior of the conductivity in crystals and glasses is illustrated by Fig. 2.

Fig, 4, Phonom mean free path A as a functinn of absolute temperature, for ghariz glass,

(a)

(b)

Fig. 5. Schematic two dimensional figures, after Zachan riasen, jllustrating the difference between; (a) the regularly of a glass.

The thermal resistivity of several single crystals has been found by de Haas and Biermasa ${ }^{3}$ to pass through a minimam in the liquid heliun rangethe position of the minimum depending on the diameter of the test specimen (Fig. 3). Casimir ${ }^{4}$ pointed out that the maximum occurs when the phonon mean free path becomes of the same order as the specimen diameter. This result means that: sound waves of the given frequency range may propagate for at least 10^{+}wave-lengths, so that the absorption per wave-length is very low.
The thermal conductivity of glasses decreases with decreasing temperature, while the conductivity of crystalline substances increases with decreasing temperature. The behavior of glasses is interpreted in terms of an approximately constant free path for
${ }^{2}$ W. J. de Haas and T. Biermasz, Physiat 2, 673 (1935); 4, 752 (1937); 5, 47, 320, 619 (1938).
© H. B. G. Casimir, Playsica 5, 40.5 (1038).
the lattice plonons, so that the conductivity decreases roughly with the specific heat. The value of the phonon mean free path at room temperature (Fig. 4) is of the order of magnitude of the scale of the disorder in the structure of glasses (Fig. 5) as determined from x-ray evidence-that is, of the order of 7A. Here we are concerned with frequencies of the order of $10^{13} \mathrm{cpss}$. This process is analogous to the scattering of ultrasonic waves in polyerystalline materials. ${ }^{\text {b }}$ At low temperatures the mean free path increases, as here the wave-length becomes larger than the scale of the disorder.
We therefore see that the behavior of sound waves of microwave frequency as deduced from thermal evidence is consistent with the behavior at lower frequencies where direct ultrasonic measurements have been made.
${ }^{4}$ V. P. Mitson and II. J. MeSkimin, J. Acons, Soc. Amer, 10, 464 (1947).

The Contributions of Acoustics to the Arts

Whampr T. Bartholomew
Harvard Universily, Cambridge, Afassuchuselts

VOLAME 24, NUMEHER 4
JULS. 1910

Wilmer T. Bartholomew

F one looks up the word "art" in the dictionary, he will find mention of various activities, including such pursuits as etching, painting, seufpture, bookbinding, weaving, and needlework, It is difficult to see how acoustics can contribute to such arts except for providing suitably quiet workroonss for the artists, and suitably reverberant galleries for the public display of their works.

We agree, of course, that when we speak of the contributions of acoustics to the arts we mean the sounding arts; i.e,, public speaking, the drama, the sound theater, music, and of course, as a very important by-product, the art of architecture. Speech or music in any enclosed space is subject to the effects of reflections, boundary shapes, and materials, as has been under investigation since the days of Wallace Clentent Sabine. The science of architectural acoustics has aided in improving the characteristics of auditoriums, large and small, and in tailoring them for the specific demands to be made by such purposes as lecturing, play production, broadcasting, individua! and class music instruction, liturgical worship, opera, sound pieture recording and reproduction, chamber music, and orchestral concerts. Existing auditoriums are being corrected for acoustical faults through the aid of high sped level recorders which make possible at rapid survey of the behavior of sound throughout
the frequency range. Much has been learned about insulating such rooms fron outcloor noise or from transmitted machinery noise, All of this has been reflected in the art of architecture itself, adding new possibilities for functional beanty never realized in past centuries.

It is completely to be expected, however, that the greatest contributions of acoustics to the arts lie in the specific art of music, since acoustics has to do with sound, and music is the art most dependent on sound. All the other sounding arts carry a certain amount of meaning in the word-content. This is also true of sung music. Absolute music, however, divorced even from programmatic implications, is wholly dependent on sound.

In addition to the contributions from the field of architectural acoustics already mentioned, music has profited in other ways. Foremost, perhaps, are the broad general research and measurement programs of the past: twenty and more years, which have so greatly increased our knowledge about music from its origins in primitive scales and in the vibrations of vocal cords, strings, reeds, membranes, and air-columns to its reception as sensations in the brain. Naturally, these programs have been made possible only as suitable apparatus became available. The history of the contributions of acoustics to music is thus largely the history of the develop-
ment and constant improvement of the microphone the vacuum tube amplifier, the loudspoaker, and their various combinations and permutations in reproducing and measuring equipment of all types. These useful devices have made possible detailed analyses of the vibration characteristics of all musical instruments, and of the orchestria as a whole, while the frequency and intensity spectra of the most important instruments, and especially of the human voice, have been exhanstively studied.

Not only has the production of somod been studied, but also its reception, and we note great: developments in the fields of plysiological and psycho-acoustics. We have learned much about the physical operation of the ear mechanism, and about the psychological asjects of hearing which lie beyond the basilar membrane. Nusic directors have become decibel-conscious, and perhaps realize more clearly why a cloubling of the number of performers does not mean a cloubling of the loudness of the chorus or orchestra. Some directors realize the implications of masking, and wish that composers did also.

The education of us musicians is a slow process, however. In 1937, a writer in the Jourmal tentatively prophesied a quantitative scate of loudness for musicians, in 5 -db steps, with a sound level meter at the conductor's stand, I don't believe this has occurred as yet!

One hesitates to mention names of those who lave contributed to this large amount of research for fear of omitting those who should not be omitted. However, in the educational field, the pioneer work of Dayton Miller at Case School, of Seashore and his followers at the University of Iowa, of Ortmann and his associates at the Peabody Conservatory of Music, and of Saumders at Harvard, and Stanley in New York, should be mentioned. Also, in the industrial fied, the equally pioncer work of Fleteher and his associates at the Bell Laboratories, and the technical advances of RCA-Victor, Columbia, Conn, and the various mikers of electronic equipment, should be recorded.
An outgrowth of this research has been the advance in all forms of sound recording and reproducing, which in addition to giving us solmd pictures of good frequency and intensity ringge, has so greatly stimulated music and its appreciation in the home and school. Whether it is now to be wire, or tape, or disks, and at what speed of revolution, is for the thirtieth anniversary meeting to tell.

An interesting field of development, given great impetus some years ago by the Bell Laboratories, is that of the stereophonic transmission, recording, and reproduction of sound, in which the spatial aspect is preserved through the use of two or more independent channels. This improves greatly the realism of any reproduced sound that: depends to
any extent on a perception of left-right differences, and for this reason slould be of great value, at least in the transmission of plays and operas.

One might think that acoustic research and improved technical methots would have given musie greatly improved pianos, violins, and other instruments, but this has not occurred. The improvements in the traditional instruments have been mostly in minor details, and in time-saving methonls of manufacture which in some cases have actually lowered the quality. True, we have new instruments in the electronic fied. One would like to say they have ushered in the dawn of a new day. In fact, some do saly so. Their various faults, however, give rise to the reactionary view that perhaps the cheapest and most efficient way to imitate a reed tone with transients fore and aft is to use a reed. A reed, after all, is a fairly inexpensive gadget, and will actually sound more like a reed than a syinthetic and imperfect imitation of one by means of vacumm tubes and loudspeakers. One is also driven to the view that there is no cheap and simple way to imitate an ensemble of musical sources short of providing at least: two and preferably more loudspeakers, with each one fed by slightly different signal material. The peculiar satisfaction produced by any ensemble, such as a large pipe organ, chorus, or orchestra, is largely a matter of the spreadness of the sources in space, and of the "fringes" and richness produced by many sources not precisely in tune and not precisely simultancous in onset and release. These new instruments have, of course, given us many new and heretofore never-heard timbres. New aesthetic experiences are in store for tis as they develop, and in tine they may improve sufficiently to influence the trend of musical composition, or even to create a new literature conceived in their own particular idiom.

Since acousticians are to some extent mathematicians, a certain amount of research is always being carried on toward the theoretical development of new scales, and of instruments to produce their tones. The long struggle for the alleged perfection of the just scale goes on today as it did twenty, fifty, a hundred years ago, even though musicians continue to demonstrate that they do not often use just intervals when they are able to do so. The fascination that these just ratios hold for academic acousticians conld be lessened if they were to realize the horizontal, motional, melodic significance of tones, usually a far more important matter artistically than their roughness or lack of it in combination with other tones. A more fruitful field, perhaps, would be the development of a scale based on the functional characteristics of the ear, as proposed by Knudsen, Such a scale would have smaller-sized steps in the upper part of the musical range where the ear is more sensitive to change. Twelve steps
per octave would be enough in the lower range, more divisions in the middle and upper.

Perhaps the most important, and in the long run most sigulificant, contributions of acoustics to music and the other arts are in less tangible matters. Thus, for example, one who has watched the growill of the Society during the twenty years of its existence motes an increasing recognition of the importance of the aesthetic factors, those hazy borderline phenomena which the pure scientist would like to ignore and often does. One of the early ones was the vibrato. Others were found in the transients of tone onset and denay, and the pitch and intensity contour of the bridge between connected tones in many orchestral instruments and in the voice. ! have mentioned the important: effect for musical "blend" of multiple sources slightly out of tune either by virtue of mistuned constant piteles or of tones modulated by vibrati, preferably at differing rates. Such aesthetic factors become of great importance in the fied of ecelesiastical architecture. The textbooks give us "optimum reverberation time" values for various typus of auditoriums, and for churches of non-liturgical and of liturgical character, the curve for the latter being higher ljecause of the lessened importance of the sermon articulation to the whole. However, more is involved here than the mere ability to attain a certain syllable articulation or to hear the music with best appreciation of its contrapuntal or harmonic structure. A long, slowly-dying reverberation of music or spoken liturgy, particularly in the higher reaches of a large church, is an effective aid to a spirit of meditation and worship. 'This effect on people can even be noticed in certain highly reverberant structures of non-religious character. In the case of churcles and cathedrals, the persistence, and the very indefiniteness of localization except in the upward clirection, may cause such reverberant sound to become a symbol for the omnipresence of the Holy Spirit, subconsciously or even consciously experienced. If this be true, and there is evidence that it is, a long reverberation becomes at desirable thing, perhaps even more desirable than the complete understanding of the spoken word. We have difficulty in giving most church musicians enough reverberation to satisfy them. This has come to light again in measurements made recently on the Riverside Church, where according to published optimum curves the church is, if anything, too reverberant even when filled, at. least at low frequencies, although church musicians generally join in condemnation of its acoustics and of what they term the "remoteness" of the large choir which does not sound out as it should. The usual attempted remedy in such cases is to cut down the reverberation of the lows and step up the
highs. One even wonders if this is the best solution, however, since the use of the words "eathedral roll" by musicians in a laudatory sense implies the long continuation of low fruguencies.

As one reviews the course of development of the Society, he notes a greater understanding and cooperation, or at least attempts in that direction, between acousticians amd musicians. In 1937 Knudsen wrote, "Throughont the centuries, until recently, music and acoustics have been closely allied. 'To be a musician, it was necessary to know thoroughly the science of somed, and the acoustician pursued his theories and experiments almost wholly for the benefit of music. Torlay, musicians as a group know far too little about acoustics, and acousticians know less about music," We would like to think that situation has been improved. 'l'he attempt to arrive at a elarification of defintions satisfactory to all is a hopeful sign, as is also the setting up of liaison committees, joint symposia, concerts at acoustical meetings, acousticians speaking to music societies, and the subele interpenetration of each other's camps from an inereasing use of each other's teminology. Occasional papers in the Journal even touch lightly the fields of the psychology and the pedagogy of music. Music journats have references and whole papers on acoustic matters. Conservatories of music are starting to tead acousties and conduct acoustic laboratories. 'The Juiliard's work branches out in this fiedd, and belps to balance the discontinuance of the acoustics work at the Peabody Conservatory some years ago.

At anniversaries one is tempted to look into the crystal ball, and by extrapolation of present: tendencies attempt to predict the future. So frequently one can be mistaken, or overly-optimistic, as can perhaps be seen by reference to the proprans at the tenth anniversary meeting, It is certain, however, that we will see further developments in architectural acoustics, particularly in the development of materials; and in general aconstic research, particularly in the fied of physiologisal and pasychoacoustics. In the fiedel of musical instruments I personally am able to see little in the crystal ball except a possible wedding between the pipe organ and some clectronically produced stops. In the recording field all I can see are wheels revolving at 333, 45, and 78, with an ominous cloud of magnetic tape approaching, Aided perhaps by wishfal thinking, I see increasing cooperation and understanding between musicians and acousticians. I see ant extension of the frequency and intensity ranges used in music, and an increasing amonnt of electrical creation and manipulation of sound for special effects, particularly in theatrical presentations, The work of Burris-Meyer points the way here. Selective
amplification, or timbre modification by means of filters, of certain instruments or of sections of an orchestra is a possibility. Sepulchral reverberation chamber effects, and the modulation of one timbre by another, as when a locomotive whistle is made to speak words, give still more possibilities for dramatic, if not for musical enhancement. We soon come to very real boundaries, however, in the playsiological limits of the ear, which are not: likely to be increased even in the next twenty thousand years. How much more would just one additional octave or ten more db add! But our musicinas would at once use it as they did with the Bell

Laboratories amplified orchestra system, and pine for more.
Optimists sometimes make statements like this: "There can be little doubt that: the music of the future will be revolutionized as the result of modern developments in acoustics," Perhaps this is true, but the erystal ball seems not so sure. Do scientific advances, improved instruments, and scientifically designed scales produce a new and superior musical art? Or doss art invent its own media, instrmments and scales, and go its own merry and uninhibited way while the acousticians try to catch up with it, explain it , and improve it ?

Beats and Nodal Meridians of a Loaded Bell

Arthur Taner Jones

Smith College, Nurihampton, Mastachusetts
(Receivel March 20, 10.19)

Abstract

A smatl load on n bell tusually changes the rapidity of beats and shifts the positions of nodal meridians. A study of the first three partials of one bell lends to the following conclusions, If the autinndal meridian nearest the position at which the load js to lee applied is associated with the lower [higher] pitched of two beating components, the adelition of the Iond increases [decreases] the mpidity of the beats, and also shifts the nearesi antinothl merithan of the lower component toward the position of the lond. Sunall increases in the loat increase these effects.

INTRODUCTION

THE nodial lines of a bell consist of meridians, which run up and down the bell at different azimuths, and circles, which lie at different levels. If a bell were perfectly symmetrical, the positions of the nodal meridians would depend on the position at which the bell was excited. If the bell is not perfectly symmetrical, the positions of the nodal meridians are determined by the distribution of matter in the bell. When there are slight deviations from symmetry, each of the various natural pitches given by the bell is likely to be affected with beats. The beats arise from two components which have the same number of nodal lines and have these lines distributed alike, except that the meridians for one component lie halfway between those for the other. Thus, for the "hum note," which is the lowest note given by a bell, each component has nodal meridians 90° apart, and the nodal meridians of one component coincide with antimodal meridians of the other.
Each of the various natural pitches of a bell is therefore likeiy to be in reality a doublet, the motion consisting of two normal morles of vilbration, each of which has its own effective inertia and effective stiffness, but which have nearly the same frequency. Mounting a small load on a bell is likely to change the effective inertia for one component more than it does for the other, and thus to change the rapidity of the beats. It also changes somewhat the distribution of material, and so is likely to produce a shift in the positions of the nodal meridians.
This paper reports a study of the clanges in the rapidity of beats and in the positions of nodal meridians under the action of a series of small loads mounted successively at a given position on the bell.

METHOD OF STUDY

This investigation is restricted to the first three partial tones of a bell which has a diameter of about 54 cm at the mouth, and a weight of about 80 kg . On this bell the first three partials are clear,
are easy to examine, and have frequencies of about 400,670 , and $810 \sim / \mathrm{sec}$. Any chosen one of the partials is readily lrought out alone by pressing against the bell, through a piece of cloth, the stem of a vibrating tuning fork of suitable frequency, and immedintely removing the fork. The bell then sings out that particular partial tone, and continues to sing for some ten to forty seconds before the sound dies out. When the bell is not londet, and is thus excited, eacla of the three partials is affected with beats-which come respectively at rates of about 0.40, 0.74, and 0.56 per second. There are no beats when the point at which the fork is applied lies on a modal meridian for either component, and this fact provides the means employed in this study for finding the locations of nodtal meridinus. The circumierence of the mouth of the bell was marked off in centimeters, and it was often possible to determine a nodal position to a fraction of a centimeter.
In order to load the bell, sixteen equally spaced holes about 4 min in diameter were drilled iround the soundhow-the thickened part on which a clapper strikes. These holes extended to a depth of a few millimeters and were tapped to receive screws. The principal part of each load was a steel cytinder about 25 mm in diameter, drilled with a longitudinal hole through which the screw slipped easily. The results of hading were erratic until a sloort brass ring of about the same diameter as the cylinder was inserted between the cyliader and the bell. This ring had three short legs that rested against the bell, and so provided a firm contact it the periphery of the cylinder. Eleven loats were used, rumning up to a maximum of nearly 140 grams, which is less than 0.2 percent of the mass of the lecll.

results

Nodal Meridians

The addition of a load shifts the pattern of nodal and antinodal meridians around the bell, and shifts it in such a direction as to bring an antinodal meridian nearer to the position of the load. With an incrensing load, the antinodal meridian comes
nearer and nearer to the position of the load, as is shown by the curves in Fig. 1. In this figure a curve is given for each of the three partials, and each curve shows the positions found for a nodal meridian of the higher pitched component, and therefore, for an antinodal meridian of the lower component. The vertical line at about 43 cm shows the position at which the loads were applied when the observations for the first partial were taken. The vertical line at about 32 cm shows the position of the loads when observations for both the second and third partials were taken. The vertical arrows that point to the axis of distance show the positions at. which nodal meridians for the lower pitched component were found when the bell was not loaded. The shifts in the positions of nodal meridians for the lower component would be given by curves parallel to those shown, but starting upward from the positions of the arrows.

When the position at which loads are added is not too far from an antinodal meridian for the lower component of the unloaded bell, the curve becomes steeper and steeper as it rises. When the loads are far enough from such an antinodal meridian, the lower part of the curve shows a binee like those in the eurves of Fig. 1. Where there is such a knee, the part of the curve that is most nearly horizontal ustailly occurs when the load is about halfway between nodal and antinodal me-

Fig. 1. Positions of antinodal meridians for the lower ditched componeat of the firsit three partial torms of a loaded bell. The entres show how these meritiatis slift around the bell under the action of an increasing load applied at one proint on the bell.
ridians. This result may be expected because a load applied close to an antinodal meridian would certainly not produce much shift; and if the load is applied at a nodal meridian, there would be nothing to determine the direction in which a shift would start, so that a load in the neighborhood of a nodal meridian may perhaps be expected to give rise to only a small shift.
The height of the knee is usually greater for the first partial than for the sccond, and greater for the second than for the third. This difference may be associated with the different masses of the vibrating segments. Each component of the first partial has four nodal mericlians and no nodal circle, and consequently has four vibrating segments, For the second partial, each component has four nodal meridians and also a nodal circle, and therefore has eight vibrating segments. For the third partial, there are six nodal meridians and one nodal circle, and therefore twelve vibrating segments. The vibrating segments for the first partial are larger than those for the second, and those for the second might at first thought seem to be larger than those for the third. But the nodal circle for the second partial is lower than that for the third, so that there is not much difference in the sizes of the lowest segments of the second and third partials. However, the thickening of the bell in the soundloow provides more mass in the lower segnents of the second partial than in those of the thircl. It follows not only that the mass of one vibrating segment at the bottom of the bell is greater for the first partial than for the second, but also that it is greater for the second that for the third. For the first and third partials, the loads at which the curves are most nearly horizontal in Fig, 1 are about average values. For the second partial, the knee is ustally lower than in Fig. 1 , but on the average I find the knee of the second partial something like half again is high as that for the third. These results seem to fit the idea that: the knee occurs for a greater load when the mass of a vibrating segment at the bottom of the bell is greater.

Beats

The curves in Pig. 2 show the rapidity of beats as a function of load. All three curves are for loads applied at one position on the bell. The curves for the first and third partials are nearly straight, but that for the second is decidedly curved, with a mininum at a load in the neighborhood of 40 grams.
For the first and third partials, the load was ralher close to a position at which there was an antinodal meridian for the lower component when
${ }^{1} \mathrm{in}$ Fig. 1 the carve for the second partial is exceptionad in this respect.
the bell was not loaded. The load therefore produced very little shift in the pattern of nodal lines. Since the load was near a nodal merislian of the higher pitched component, the frequency of that component was not much affected by the load. The principal change brought about by the load was an increase in the effective inertia of the lower component, with a consequent decrease in the frequency of that component. The beats therefore became more rapid, and for the small changes in load that were involved, the relation between load and rapidity of beats was nearly linear.
For the second partial, the position at which the load was applied was not far from a nodal meridian of the lower component on the unloaded bell. The effect of a small enough load was therefore to lower the pitch of the higher component without greatly affecting the lower. This decreased the rapidity of the beats. But the load also shifted the meridians, and when the load was in the neighborhood of 40 grams, it was about halfway between a nodal and an antinodal meridian for each component. Under these circumstances a small increase in the load lowered both components to about the same extent, and so had little effect on the rapidity of the beats. As the load increased further, the effect approached that described in the preceding paragraph, so that the curve rose and tended to straighten out.

conclusion

A study of the shifts of nodal patterns and the rapidity of beating, when increasing loads were applied at each of the sisteen holes around the bell,

Fig. 2. Rapidity of beats in the first three partial tones of a bell. The curves show how the rapidity of the beats changes on the bedl.
showed that the above statements seemed to fit the facts in general. A small load applied to a bell rotates the pattern of nodal and antinodal meridians in such a sense as to bring closer to the load an antinodal meridian of the lower pitched component. The addition of the lond increases the rapidity of beats when the load is closer to an antinodal than to a nodal merictian of the lower of the beating components, and in the opposite case it decrenses the rapidity of the beats.

The bell used in this study was kindly lent by the Meneely Bell Company, and I wish to express my appreciation of their courtesy, and my hearty thanks.

A Proposed Loading of Piano Strings for Improved Tone

Frankilin Mtlomr, Jiz.
Kenyou College, Gambier, Ohio
(Received March 5, 19.19)
An ideally stiff string has overtones ν_{n} which are sharper than multiples of the functamental, the inharmonicity being proportional to ($n^{2}-1$). This well known theoretical result has been verified by Schuck and Young [I. Acous. Soc. Am, 15, I, (1943)] for typical strings, It is proposed to improve the tone of a piano string by attaching a small mass, thas lowering the frequency of each nornal mode excepa those for which the masis is at a node. It turns aut that for an ideally stiff string, approximate correction of a large number of overtones catn be oblatined with a single mass suitably located. In the limit of a large nass near the end of the string, the correction is exact for all overtones. A anass of the order of 0,1 g placed a few cm from the end of a typical string adjusts the first eight overtones to within a few humdredths of a menitome, a negligille inharmonicity. Improved tone is expected siose the subjective fumdamentals derived from difference tones beween adjacent partials will show greatly reduced dispersion. The effect of the loating upon tuniag would reduced the observed nitretching of the octaves to a negligible amotent. Deviations from ideal stiffeess and the effect of adding two masses are also considered.

INTRODUCTION

THE modal freftencies of a perfectly flexible string are integral multiples of the fundamental frequency, but ench partiah, including the fundamental, is raised in frequency if stiffness is not negligible. Secbeck showed that

$$
\begin{equation*}
\nu_{n}=n v_{n}\left(1+\alpha+\alpha^{2}+1 \pi^{3} \alpha^{2} n^{2}+\cdots \cdot\right)_{1} \tag{1}
\end{equation*}
$$

where ν_{n} is the frequency of the nth partial, $y_{0}=\frac{1}{2}(T / M L)$ is the fundamental frequency calculated from the tolal mass M, length L, and tension T of the string, and α is a constant depending upon the string. ${ }^{-3}$ For a circular string of radius a and specific gravity ρ and Young's Nodulus Q, $\alpha=\left(a / 2 \mu_{0} L^{2}\right)(Q / \rho)$, which is a small quantity for the strings of a piano. For convenience, let $\beta==\frac{1}{2} \pi^{2} \alpha^{2}\left(1+\alpha+\alpha^{2}\right)^{-1}$ and $\nu_{0}^{\prime}=\nu_{0}\left(1+\alpha+\alpha^{2}\right)$; then

$$
\begin{equation*}
\nu_{n}=n \nu_{0}^{\prime}\left(1+\beta n^{2}\right) . \tag{2}
\end{equation*}
$$

We will call a string for which stiffness is the only perturbation an "ideally stiff" string, The higher terms in n^{4}, ele., which were omitted from Eid. (1) are negligibly small for actual piano strings.
Experimental investigations of the modal frequencies of strings have been made by several authors, ${ }^{-7}$ all of whom found the partials to lee definitely inharmonic. The most compretensive work lhas been that of Schuck and Young, who
1A. Seebeck, Abh, d. Math. Phys. Cl, d, K, Suchs, Gesellschaft d. Wiss. J.eipzig, 1852.
${ }^{2}$ Lord kayleigh, Theory of Sound (Macmillan, New York, 189.1), second edition, vol. I, p. 301 .
si,' M. Morse, Vibration and Sound (McGraw-Hill Book Company, Inc., (048), second edition, p. 170.
©R, S. Shankland and J. W. Coltman, J. Acous. Soc, Atm. 10, 161-166 (1939).
A. WV, Nolle and C. P. Boner, J. Acous. Soc. Am. 13, 145-148 (19.41).
${ }^{\circ} \mathrm{O}, \mathrm{H}$. Schuck and R. W. Young, J. Acous. Soc. Am. 15, 1-1 (1943).
${ }_{7 R}$, Jouty and Y, Rocard, Rev. Sci. Paris 84, 283-285 (1946).
showed that for many strings a remarkably aceurate square-law inharmonicity does indeed exist; β was found to be about 0.000139 for a typical F_{3} string (the F below middle \mathcal{C}). The very lowest two octaves showed a hybrid behavior. Schack and Young found that for any given piano, the inharmonicity was lowest for strings in the low middle register. In comparing pianos they found the inharmonicity to be less for pianos with longer strings, as is to be expected from the formula for α. They showed quantitatively how the measured inharmonicities cause the "stretching of the octaves" which is commonly foumd in the tuning of pianos. They attributed the mellow tone of longer strings to the fact that the smaller inharmonicities of such strings cause less dispersion among the frequencies of the subjective fundamentals derived as difference tones between adjacent partials.

It is apparent that it would be desirable to reduce the inharmonicities of the partials of the vibrating piano string, It is well known that a small mass attached to the string will lower each modal frequency except those for which the mass is at a node: in this paper the effects of various loadings upon the inharmonicities are considered. It turns out: that approximate correction of many partials can be obtained by a single small mass suitably located.

EFFECT OF VARIOUS LOADINGS

Case 1. Continuous loading

We shall apply the usual first-order perturbation theors's and assume throughout that the mass perturbation and the stiffuess perturbation are independent. If the linear density is $\epsilon_{0}[1+b(x)]$, where $b(x)$ is small, then

$$
\begin{equation*}
\nu_{n}=n \nu_{0}^{\prime}\left[1+\beta n^{2}-(1 / L) \int_{0}^{L} b(x) \sin ^{2}(\pi n x / L) d x\right] . \tag{3}
\end{equation*}
$$

[^2]The location of each node is in general shifted by the mass perturbation, but this fact does not affect the derivation of Eq. (3). As was shown by RayJeigh ${ }^{9}{ }^{9}$ a sinasoidal density perturbation will affect only one of the partials; in fact, if $b(v)$ is expanded into a Fourier cosine series, the successive coefficients in the expansion determine the correction to the frequencies of the successive partials. In practice, a perturbation such as

$$
\begin{equation*}
b(x)=-4 \beta \sum_{n} n^{2} e^{-k n} \cos (2 \pi n \cdot x / L) \tag{4}
\end{equation*}
$$

could be used to correct the first ten or twenty partials, the factor $t^{-k n}$ being adjusted to damp out the higher terms of the serics for $b(x)$. This method of compensation, although theoretically attractive because it could be applied to a non-ideal string, would be prohibitively complicated to carry out experimentally.

Case 2. Single mass, two partials harmonized

Passing now to the case of discrete masses m_{i} placed at distances x_{i} from one end of the string, Eq. (3) becomes

$$
\begin{equation*}
\nu_{n}=\| \nu_{0}^{\prime}\left(1+\beta n^{2}-\beta \sum_{i} \mu_{i} \sin ^{2} n \theta_{i}\right), \tag{5}
\end{equation*}
$$

where we define $\mu_{i}=m_{i} / M \beta$ and $\theta_{i}=\pi \cdot x_{i} / L$. Thus, for a single mass,
and

$$
\begin{equation*}
\nu_{1}=v_{0}^{\prime}(1+\beta-\beta \mu \sin \theta) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\nu_{n}=n \nu_{u}^{\prime}\left(1+\beta n^{3}-\beta \mu \sin ^{2} \mu \theta\right) . \tag{7}
\end{equation*}
$$

The inharmonicity D_{n} of the nth partial is defined as $D_{n}=1200 \log _{2}\left(\nu_{n} / n v_{1}\right)$, whence

$$
\begin{equation*}
D_{n}=1731\left(\nu_{n}-n v_{1}\right) / n v_{s}, \tag{8}
\end{equation*}
$$

if ν_{n} is almost equal to $n \nu_{1}$. The unit for D_{u} is the logarithmic cent, or 0.01 of a semitone (about a

Fig. 1. Effect of yarious loadings upon the overtones of an ideally stiff F_{3} string. Curves la and 16 are single-mass corrections; curves $2 a$ and $2 b$ are two-mass corrections.

[^3]Tamle I. Carrection of overtones of an F_{1} string for which ano 0.000139 , for various loadings, The talle shows the residua intarmonicity D_{n} in logarithmic cents for each partial whose nomimal requency is $n \nu_{i}$. The corrections $1 a, 1 b, 2 a, 2 h$ arc described in the text.

"	naterar.	Slingly mus		Two masm	
		curr. ${ }^{\text {d }}$	carr. 16	corr. 24	corr. 21
1	0	0	0	0	0
2	0.7	0	0	0	0
3	1.9	0.1	0,0	0	0
4	3.6	0.5	0.1	0	0
5	5.8	1.1	0,3	0.7	0.2
6	8.4	2.5	0.7	1.8	0.4
7	11.5	4.5	1,3	3.5	1.0
8	15.1	7.3	2.2	6.5	1,8
9	19.2	11.1	3.5	10.2	3.0
10	23.8	16.0	5.3	is.1	4.8
11	28,8	21.7	7.7	20.9	7.0
12	34.3	28.4	10.5	27.7	10.0
13	150,3	35.6	1.4 .4	35.1	13.7

0.06 percent change in frequency). Inharmonicities of a few cents are detectable; for example, the tempered fifth is about 2 cents flatter than a true fifth, and this inharmonicity is perceived by piano cuners. Since β and $\mu \beta$ are small quantities for actual strings, Eqs. (6) and (7) then yiedd

$$
\begin{equation*}
D_{n}=1731 \beta\left[\left(n^{3}-1\right)-\mu\left(\sin ^{2} n \theta-\sin ^{2} \theta\right)\right] . \tag{9}
\end{equation*}
$$

Setting $D_{n}=0$, we arrive at the condition

$$
\begin{equation*}
n^{3}-1=\mu \sin (n-1) \theta \sin (n+1) \theta . \tag{10}
\end{equation*}
$$

Since there are two adjustable constants, μ and θ. two equations of the type (10) may be set up, and two upper partinis may be harmonized (i,e., adjusted for $D_{n}=0$). For example, let us adjust ν_{3} and ν_{3}. Equation (10) yields

$$
\begin{equation*}
3=\mu \sin \theta \sin 3 \theta_{t} \tag{11a}
\end{equation*}
$$

and

$$
\begin{equation*}
8=\mu \sin 2 \theta \sin 40 . \tag{11ib}
\end{equation*}
$$

These equations may be solved by algebraic menns, giving $\mu=-54 / 5$ and $0=\sin ^{-1}(S / 6)^{4}=65.9^{\circ}$. This single-mass loading suffers from two defects. First, μ is negative, and controlled removal of mass would offer technical difficulties and might weaken the string. Second, while it is true that it makes $\nu_{a}=2 \nu_{1}$ and $\nu_{3}=3 \nu_{1}$, calculation shows that the remaining partials are affected irregularly. Some are lowered, some are raised, but all are about as inharmonic as before. This is a consequence of the fact that the negative loading at $\theta=65.2^{\circ}$ is far from the end of the string, $\theta=00^{\circ}$ corresponating to the center of the string.
For a low tone of a piano, the fundamental is often weak or missing. A tuner then adjust octaves by relying upan beats between ν_{2} and p_{4}. For sucls a string it would be advantageous to harmonize ν_{1}, ν_{s}, and ν_{4}. Unfortunately, the appropriate equations analogous to Eqs. (1t) have no real solution for θ.

Tabler II. Inharmonicities of subjective fundamentals derived fromi neighboring partials, calculated for the same string as Table I.

\because	murorr.	Slngle maks		Two thasara	
		corr. Ja	carr. 16	corr. 2a	coer, 24
1	1.4	0	0	0	0
2	4.3	0.3	0.0	0	0
3	8.7	1.6	0.1	0	0
4	14.4	3.8	1.1	3.6	0.9
5	21.6	9.4	2.5	7.2	1.4
6	30,2	16.0	4.9	13.7	4.1
7	40.3	27.4	8.6	27.5	7.9
8	51.8	41.8	13.2	39.4	12,6
9	64.7	59,0	21.5	59.8	20.5
10	79.2	79.4	32	78.7	30
11	95.0	114	42	102	42
12	112.2	12.3	61	126	58

Case 3. Single mass, one partial harmonized
By giving up the requirement of Case 2 that $\nu_{3}=3 \nu_{1}$ and retaining only $\nu_{2}=2 \nu_{1}$, we may arbitrarily fix either μ or θ so that $D_{2}=0$. It follows from Eq. (11a) that the smallest positive mass which will do the job is $\mu=16 / 3$ placed at $\theta=\sin ^{-1}(3 / 8)^{4}=37.8^{\circ}$. However, by placing a larger mass closer to the end of the string, the fluctuations in inharmonicitios can be largely removed since the mass will be near a node only for relatively high partials. All of the Jower partials will be improved, in a somewhat regular fashion, and the 2nd partial will be exact. 'lypical results are given in Table I and plotted in Fig. 1. Two single-mass corrections are calculated for the medium grand piano F_{3} string of Schuck and Young. This is an ideally stiff string, with $K(=1731 \beta)$ having a value of 0,24 as determined from the slope of the D_{n} vs, n^{2} curve in Fig. 8 of reference 6. The residual inharmonicities remaining after correction are compated from Eq. (9), using the experimental value of K, and values of μ and 0 consistent with E (J. (11a), If we arbitrarily assume that an inharmonicity of ± 3 cents is tolerable, Table 1 shows that only the first 3 pattials of the uncorrected string are within the 3 cent limit. It is seen that correction $1 a$ ($\mu=35.55$ at $\theta=10^{\circ}$) renders the first 6 partials tolerable, while correction $1 b\left(\mu=132.99\right.$ at $\left.\theta=5^{\circ}\right)$ similarly adjusts the first 8 partials. In the limit, a large mass placed very near the end of the string gives exact correction for all partials (until the approximation of Eq. (1) breaks down). This is apparent from the fact that for simall 0, Eq. (10) reduces to $\mu \theta^{2}=1$, and this condition does not involve the mode number n.

Case 4. Two masses, 3 partials harmonized

By loading the string at: two points with masses μ_{1} and μ_{1} placed at θ_{1} and θ_{z}, there are four adjustable constants, and hence in theory, at least, we can adjust four of the upper partials. To adjust:
$\nu_{2}, \nu_{3}, \nu_{4}$, and ν_{5}, we must find a real solution for the equations

$$
\begin{align*}
3 & =\mu_{1} \sin \theta_{1} \sin 3 \theta_{1}+\mu_{2} \sin \theta_{2} \sin 3 \theta_{2} \tag{12a}\\
8 & =\mu_{1} \sin 2 \theta_{1} \sin 4 \theta_{1}+\mu_{2} \sin 2 \theta_{2} \sin 4 \theta_{1} \tag{12b}\\
15 & =\mu_{1} \sin 3 \theta_{1} \sin 5 \theta_{1}+\mu_{2} \sin 3 \theta_{2} \sin 5 \theta_{2} \tag{12c}\\
24 & =\mu_{1} \sin 4 \theta_{1} \sin 6 \theta_{1}+\mu_{2} \sin 4 \theta_{2} \sin 6 \theta_{2} \tag{12l}
\end{align*}
$$

For constructional rensons, we will limit cliscussion to positive loadings. A careful study of Eqs. (12) shows that there is no real solution for 0_{1} and θ_{2} with positive masses, nor is there a real solution if liq. (12d) is replaced by the corresponding equation for adjustment of $\nu_{0} \nu_{7}$, or ν_{8}. Therefore we shall consider only the first three of Ects. (12), trenting θ_{3} as an adjustable parameter. It turns out that 0_{1} is real only for $0 \leqslant 0_{2} \leqslant 52.2^{\circ}$ and $69.2^{\circ} \leqslant 0_{2} \leqslant 90^{\circ}$ and for corresponding intervals in the other ladf of the string. For both μ_{1} and μ_{a} to be positive and finite, θ_{1} is further restricted, so that one mass must be placed in the region $0<0<36^{\circ}$ and the other mass in the region $69.2<0<72^{\circ}$. The inharmonicities for two choices of θ_{2} are listed in Table 1, and plotted in Fig. 1. For each of these loadings $D_{9}=D_{3}=D_{4}$ $=0$. Curve $2 a$ is for $\mu_{1}=0.857$ at $\theta_{1}=69.43^{\circ}$ and $\mu_{n}=38.93$ at $\theta_{2}=10^{\circ}$. This may be compared with the single-mass correction $1 a$. Likewise, placing a larger mass at 5°, we have carve $2 b$ for which $\mu_{1}=0.203$ at. $69.33^{\circ}, \mu_{2}=136.92$ at 5°.

In gencral, each two-mass correction involves a mass near the end of the string of the same order as that for the corresponding single-mass correction, and, in addition, a much smaller mass near the 60° position. Because of its position, the small mass introduces some irregularities in the inharmonicities, but these are small. The two-mass correction cloes not materially improve the 5 th and higher partials,

Fig, 2. Effect of a singlemass loading ppon the derived fundimentals of the string of Fig. 1 .
although it does of course render the first 4 partials exactly harmonic. It is doubtfal whether a twomass correction would justify the technical complexities introduced.

THE DERIVED FUNDAMENTALS

As pointed out by Schuck and Young, the derived fundannentals may play an important role in the mellowness of the tone quality of a string. It would be desirable to reduce the spread among the frequencies of the subjective difference tones arising from adjacent partinls. Let $D_{n, n+1}$ be the inharmonicity of $\left(\nu_{n+1}-\nu_{n}\right)$ with respect to ν_{1}. Since, from Eq. (8), $v_{n}=n \nu_{1}\left(1+D_{n} / 1731\right)$, we may compute the ictual difference frequency $\left(\nu_{n+1}-\nu_{n}\right)$ and thence find $D_{n, n+1}$. The result is

$$
\begin{equation*}
D_{n, n+1}=n\left(D_{n+1}-D_{n}\right)+D_{n+1} . \tag{13}
\end{equation*}
$$

For an ideally stiff string for which $D_{n}=\kappa\left(n^{z}-1\right)$, we obtain

$$
\begin{equation*}
D_{n, n+1}=3 K n(n+1) \tag{14}
\end{equation*}
$$

For any chosen value of n, the inharmonicity of the derived fundamental is proportional to the factor K for that string. Therefore, as proposed by Schuck and Young, the slope K of the D_{n} ts. n^{2} plot should be intimately related to the "mellowness" of the string, Incidentally, Eq. (14) shows that for an ideally stiff string $D_{n_{1} n+1}$ is almost a straight line when ploted against n^{2}.

The inharmonicities of the derived fundamentals have been calculated for the uncorrected F_{a} string of reference 6 , and are surparisingly large, being of the order of 3 times the inharmonicities of the partinls. Table II shows that none of the derived fundamentals is exactly harmonic for the uncorrected string, and only the first one is within 3 cents of the fundamental. The single-mass correction $1 b$, which is plotted in Fig. 2, exactly adjusts the first derived fundamental, ind reduces the first 5 inlonrmonicities to less than 3 cents. The improvement

 the octaves, Solid curve is for ideally stifl strings b broken curve is or actual F_{1} and F_{3} strings.

Tamp: III. Calculated buning for a medinum grand pamo, following the usual tuming procedure, An strings assenued ideally piff wilh varions constames K as liated. Lubarmonicities
of the fundamentali itre kiven, expressed in logarithanic cents of dhe furndanentatis are kiven, expressed in logarithmic cents relative to F_{3}.

Nuts:	Fireauency	\boldsymbol{N}	H11140r.	Silugle mass	
F_{1}	43.7	0.69	-12.5	-1.8	-0.3
F_{2}	87.3	0.24	- 2.9	-0.5	-0.1
F_{1}	175	0.24	0	0	0
F_{4}	3.19	0.48	$+0.7$	0	D
F_{4}	698	1.25	+ 2.2	0	0
Pa_{6}	1.396	1.9	+. 5.9	0	
r_{7}	2703		+11.6	0	0

is greatest for the fundamentals derived from the lower partials, ind it is just these partials which, becatse of their intensity, would profluce the strongest subjective tones.
The twe-mass correction adiusts the first 3 derived fundamentals exactly, but Taible II shows that the over-all result woukl not be noticeably better than the simpler single-mass correction.

THE EFFECT UPON TUNING

Let us assume that a tuner starts with F_{3} and adjusts $F_{5}, F_{b} F_{6}$, and F_{y} by beating fundamentals against 2nd partials. Leet us also assume that the tuning of F_{2} and F_{1} procecels by the beating of 2nd partinls against 4th partials. As shown by Schuck and Young, the inharmonicities of the first few partials cattes stretehing of the ostaves which in in guantitative agreement with the observations of Railsbacis ${ }^{\text {to }}$ upon many pianos if the above tuning scheme is followed. The sharpness of the upper octaves presents a very real difficulty to the tumer, and is a source of distress to the sensitive performer or listener. Table III and Fig. 3 show the calculated effect of the simgle-mass correction 10 upon the tuning of the medium grand piano of reference 6 , ansuming all strings to be ideally stifi. The stretching of the upper octaves is eliminated identically, and that of the lower octaves reduced to a negligible amount. It is obvious that the two-miss correction would climinate stretehing of all oetaves, but again the single-mass correction seems entirely adequate.

Strings that are not ideally stiff

The foregoing analysis applies only to strings that are ideally stiff, or, in general, to strings for which $D_{n}=K\left(n^{2}-1\right)$ for whatever reason. However, a string that is not ideally stiff can usually be improved by a suitable single-mass correction. Consider the F_{1} string (low F) of the mediam grand piano of reference 6 . The D_{n} vs. n^{2} curve consists of two linear segments of slope $K_{1}=0,60$ and $K_{2}=0,32$. A single-mass correction at $0=5^{\circ}$ has (100. L. Railstach, J. Acous. Soc. Am. 9,274 (19.38); 10, 86 (19,38).

Fig. 4. Eifect of a conupromise single-mass loading upon the overtones of an actual F_{1} string.
been computed, using a β based upon a compromise $K=0.50$; the results of applying this correction to the observed (non-ideal) inharmonicities are shown in Figs. 4 and 5 . It is seen that the inharmonicities both of the partials and the derived fundamentals have been considerably improved, at least up to $n=12$.
A tuning curve has been calculated based upon actual F_{1} and F_{2} strings and is shown as the broken curve in Fig. 3. For the F_{7} string a compromise $K=0.40$ was used. While not as good a correction as if the strings had been ideally stiff, nevertheless an improvement is notect. It woukd, of course, be possible to adjust the tuning curve at the expense of the derived fundamentals. It is probable that the improvement of tone is more desirable for the lower piano strings than is elimination of octave stretching, although this is a mater of conjecture. For the middle low strings and above, this dilemma need not be faced, since experiment has shown such strings to be idenlly stiff.

Conclusion

The calculations described in this paper indicate several ways in which a single-mass loading might

Fig. 5. Effect of a compromise single-mass loading upon the derived fandamentals of int actual F_{1} btring.
be expected to improve the tuning of a pinno and the tone of the individual strings. The practical details of the realization of such a loading remain to be worked out. Λ small, controlled loading might be applied by electrolysis, but it would probably be desirable to use a movable mass to allow for acljustment as the string stretches in the initial tuning. The problem of firm attachment of the mass to the string would have to be solved. In production, a relatively few stock masses could be used, the position θ for each string being adjusted according to Eq. (11a). It might be possible to design an inharmonicity meter for routine factory adjustment as the piano is strung. As a concrete example, the correction 16 for a string of length 120 cm and mass 7.2 g would amount to only 0.133 g placed 3.33 cm from one end of the string. The load coukd be subdivided between the cquivalent points near each end of the string. Because of its great density, gold would be a most suitable material for the added mass.
The fimal criterion of the desirability of loadings such as described in this paper would, of course, lie in listening tests with actual pianos.

Generalized Solutions of Webster's Horn Theory*
 Osame K. Mawandi
 Acoustics Research Laboratory, Ilarvard University, Cambridge, Massarhusells

Webster's equation for the approximate formulation of the propagation of sound waves in horns is solved using two methods of appronelh. The first method considers a transmissimn line with variable parameters as the electrical analogue of the horn. This approach is specially useful in yielding generalized solutions for horns of finite length. The second method, based on an investigation of the sitghazed solutions for horns of finite length. The seconth method, based on an investigation of the sithgle-
larities of Weloster's differential equation, leads to the discovery of a great number of new families of horns.

1. INTIODUCTION

ARIGOROUS solution for the propagation of sound waves down horns of arbitrary shapes is still outside the realm of the existing methods of mathematical physics. To reduce the complexity of the mathematics, a mumber of assumptions are introduced. Some of these, however, are in some instances in contradiction to plysical concepts. The resulting "simplified" solutions ${ }^{1}$ which have been developecd are thus the mathematical description of an iclealized case, All these solutions formulate the propagation as a one dimensional problem and in lieil of the wave equation the Webster equation, incorporating the data of the problem, is found.

The previous assumptions are platusible when the horn does not flare too quickly and when the curviture of the wave front is small. The range of validity of the solutions is thus restricted to low frequencies. Consideration of curved wave fronts, although more in accordance with physical reality, leads to considerable complication in the mathematics. The additional labor required to solve the curved wave front problem is not justified, since the Webster equation is already an approximate formulation to the phenomenon of propagation, Consequently, the wave front is assumed to be plane.
The preceding discussion would lead one to believe that Webster's equation is a crude approsimation valid only in a very restricterl number of cases, but otherwise giving results of doubtful value. To a certain extent this is true. The justification of its use is that, for want of a better solution and from a practical point of view, the plane wave theory yields a design basis of comparison-at low frequencies-for horns of different shapes. The high frequency transmission characteristics are not so important, since the behavior of all horns at high frequencies is very nearly the same.
*This research has been aided by funds matde avaidable under a contract with the ONR.
1A. G. Wetbster, Proc. Nat. Acild. Sci, 5, 275 (19919). C. R. Jannan and J, Slepian, AlFE 43, 303 (1924), G, W. Stewart and R, B. Lindsay, deoustics (D. Van Nostrand Cumpiny, lnc, New York, 1930), p. 332.

2. WEBSTER'S EQUATION, ITS SOLUTION

A search in the literature' reveals the fact that the horn contours which have been studied are very few in number. This is due to the difficulty of solving Webster's equation exactly when the horn contours are of arbitrary shape. Salmond has made use of mumerical methods of integration when the solution in closed form is unfamiliar. But his method is not suitable for solving horns of finite length. The purpose of the present paper is to obviate these dificulties and to develop generalized methods of solution. Two lines of approach have been followed to achieve this aim. The first method, based on the analogy between electrical and acoustical systems, is very effective in dealing with horns of finite leugth. Its importance as a generalized method of study, however, is secondiry, The second approach has a wider scope of generality and has the great merit of discovering new fanilies of horns.

3. The meectrical analogub

The idealized horn described by Webster's approximations has for analogue an electric transmission line with variable parameters. The validity of the preceding statement can be argued on physical reasoning. The transmission line is vistalized as the limiting case of infuitesimal lumped inductances and capacitances connected in a recurrent pattern. Similarly in the horn, by virtue of the plane wave theory assumptions, each infinitesimal slice of air is allowed to vibrate only in a direction parallel to the axis of the horn. Both infinitesimat systems having one degree of freedom and both behaving alike in a linear mamner, the amalogy is established.
The original problem of the solution of the characteristics of a horn by Webster's approximate solution is reduced to a discussion of the properties of special classes of electric transmission lines.
(i) The Infinite Line

Let the line be first thought as built from a large number of quadripoles in catscade numbered
${ }^{2}$ (i) S. Ballantine, J. Frauklin Inst, 203, 8.5 (1927), (1) V . Salmon, J. Acoust, Soc, Am, 17, 212 (1946).
${ }^{2}$ Sece reference $2(b)$, p. 194 ,

Fig. 1 , Horn and its electrical amalogue.
$1,2, \cdots, n, \cdots$. For any one quadripole there exists a set of relations between the input and output voltages and currents. These relations are of the form:

$$
\begin{align*}
& V_{n-1}=a_{11, n} V_{n}+a_{12, n} I_{n} \\
& I_{n-1}=a_{21, n} V_{n}+a_{21, n} I_{n} \tag{3.1}
\end{align*}
$$

or in the notation of matrix algebra:

$$
\begin{equation*}
\binom{V_{n-1}}{I_{n-1}}=\left(a_{i, n} n\right)\binom{V_{n}}{I_{n}} . \tag{3.2}
\end{equation*}
$$

Since the lines considered are to be physically realizable and are to be constructed from linear passive elements, each quadripole n can be represented by a T network lonving for branch impedances $\left(Z_{n}{ }^{11}-Z_{n}{ }^{12}\right), Z_{n}{ }^{12},\left(Z_{n}{ }^{33}-Z_{n}{ }^{12}\right)$. These impedances are related to the elemente of the characteristic matrix ($a_{i, n}$) in the following manner:

$$
\begin{align*}
& a_{11, n}=Z_{n}{ }^{11} / Z_{n}{ }^{14} \text {, } \\
& a_{12, n}=\left[\left(Z_{n}^{12}+Z_{n}^{2 z}\right) / Z_{n}^{12}\right]-Z_{n}{ }^{12}, \\
& a_{\text {at, } n}=1 / Z_{n}{ }^{12} \text {, } \\
& a_{27, n}=Z_{n}{ }^{33} / Z_{n}{ }^{12} \text {. } \tag{3,3}
\end{align*}
$$

The branch impedances depending on the geomctry of the lorn (the terms horn and line are freely interchanged in (his discussion), the coefficients $n_{i j, n}$ are uniquely defined for a specific horn slape. Since any one quadripole n represents the behavior of an infinitesimal section of horn, comparison of the two analogous systems of Fig. 1 leads to:

$$
\begin{equation*}
L_{n}=\frac{\rho \Delta x}{S_{n}} ; \quad C_{n}=\frac{S_{n} \Delta x}{\rho c^{y}}, \tag{3.4}
\end{equation*}
$$

S_{n} being the cross-sectional area of the "element" $n . \Delta x$ is the width of the infinitesimal section of the horn, ρ is the density of the air, and c is the velocity of propagation of sound in free space. By means of relations (3.3) the coefficients $a_{i, n}$ are identified as:

$$
\begin{align*}
& a_{11, n}=1-\omega^{3} L_{n} C_{n}=1-(\omega \Delta x)^{2} / c^{2} \\
& a_{12, n}=j \omega L_{n}=j \omega p \Delta x / S_{n} \\
& a_{21, n}=j \omega C_{n}=j \omega S_{n} \Delta x / p c^{4} \\
& a_{22, n}=1 . \tag{3.5}
\end{align*}
$$

A functional relation for the input impedance at the throat of the horn can now be determined from the fundmmental pair of relations (3.1). Thus,

- E. Guillemin. Communication Neturorks (John Wiley and Sons, Inc., New York, 1935), Vol, II, p. 140ff.
dividing the first by the second of these relations, it is found that,

$$
\begin{equation*}
Z_{n-1}=\frac{a_{11, n} Z_{n}+a_{12, n}}{a_{21, n} Z_{n}+a_{22, n}} \tag{3,6}
\end{equation*}
$$

where $V_{n} / I_{n}=Z_{n}$ and $V_{n-1} / I_{n-1}=Z_{n-1}$. $\lambda s A x$ is made to appronch zero, all terms in (3.6) become functions of the continuous independent variable x. The above equation then reluces to:

$$
\begin{equation*}
Z-\frac{\partial Z}{\partial x:}=\frac{a_{11}(x) Z+a_{18}(x)}{a_{12}(x) Z+a_{12}(x)} . \tag{3.7}
\end{equation*}
$$

Substituting the values of the coefficients $a_{i j}(x)$ from (3,5) and neglecting infinitesimals of higher order, the previous relation may be pat in the form:

$$
\begin{equation*}
\frac{\partial Z}{\partial x}-\frac{j \omega}{\rho r^{2}} S Z^{2}+\frac{j \omega \rho}{S}=0 \tag{3.8}
\end{equation*}
$$

The latter expression is a generalized Ricatti equation. This relation must be equivalent to Webster's equation. The equivalence is necessary to confirm the precediug plysical argument establishing the amalogy between the line and the horn. By means of the two successive transformations $Z=1 / Y$ and $Y^{\prime}=-\left(S \phi^{\prime} / j w \rho \phi\right)$ (Y defines the input admittance) it is readily found that Eq. (3.8) reduces first to:

$$
\begin{equation*}
\frac{\partial y}{\partial x}-\frac{j \omega \rho}{S} Y^{y}+\frac{j \omega S}{\rho c^{2}}=0 \tag{3,9}
\end{equation*}
$$

then to the Welster equation:

$$
\begin{equation*}
\frac{d{ }^{2} \phi}{d x^{2}}+\left(\frac{S^{\prime}}{S}\right)^{d \phi} \frac{d \phi}{d x}+\left(\frac{\omega}{c}\right)^{2} \phi=0 . \tag{3.10}
\end{equation*}
$$

The dependent variable ϕ is identified with the velocity' potential.
The Ricatti-impedance equation is not ensier to solve than Webster's original equation, As a matter of fact, the discussion of the former equation is usually performed on its transform, the second order linear differential equation. ${ }^{6}$ One of the aims of this study being the investigation of possible methots of solution, a brief discussion of the impedance equation will be made.
The use of the admittance liq. (3.9) is sometimes more convenient. Writing $y=Y_{\rho c}$, this same equation becomes:

$$
S \frac{d y}{d x}-\frac{j \omega}{c} y^{n}+\frac{j \omega}{c} S^{n}=0 .
$$

- E. L. Inee, Ordinary differential rquations (Dover l'ablications, New York, 194.1), p. 205,

Solving the previous expression（3．9＇）as a quadratic cquation in S ，it is found：

$$
\begin{equation*}
S=y\left[-\frac{j c}{2 \omega} \frac{\partial y}{\partial x} \cdot \frac{1}{y} \pm\left\langle 1-\left(\frac{c}{2 \omega} \frac{1}{y} \frac{\partial y}{\partial x}\right)^{y}\right\rangle^{1}\right] . \tag{3,11}
\end{equation*}
$$

The expression S is reduced to a more condensed form when $-(j c / 2 \omega)(1 / y)(\partial y / \partial x)$ is substituted by $\sinh 0$ ；Eq．（3．11）is then

$$
\begin{equation*}
S(x)=y e^{i \theta} . \tag{3.12}
\end{equation*}
$$

Since $S(x)$ is not a function of the frequency $\omega / 2 \pi$ ， then：

$$
\begin{equation*}
\frac{\partial S}{\partial \omega}=0=\frac{\partial y}{\partial \omega}+y \frac{\partial \theta}{\partial \omega} . \tag{3.13}
\end{equation*}
$$

The relation（ 3,13 ）can lee considered as the general－ ized equation for the propagation of sound waves in horns．This relation has for intermediate integral the Ricatti－impedance（or admittance）equation． A direct use of Eq．（3．13）is to determine all families of horns having admittances of the form：

$$
\begin{equation*}
y(x ; \omega)=\Theta(x) \cdot \Omega(\omega) . \tag{3.14}
\end{equation*}
$$

It is expected that Eq．（3．13）should become tract－ able for the above case．When（3．14）is substituted in（3．13），then using the method of separation of variables，the equations for Θ and Ω are：

$$
\begin{equation*}
\frac{\partial \Theta}{\partial x}-\Theta k_{0}=0 \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\partial \Omega}{\partial \omega}\right)^{2}\left(1-\frac{c^{2}}{4 \omega^{2}} \cdot k_{0}^{3}\right)=-k k_{0}^{c^{2}} \frac{c^{2}}{4 \omega^{4}} \tag{3.16}
\end{equation*}
$$

where k_{0} is an arbitrary constart．The second of these relations integrates to：

$$
\begin{equation*}
\log \Omega \cdot A=j \cos ^{-1}\left(\frac{c k_{0}}{2 \omega}\right) \tag{3.17}
\end{equation*}
$$

A being a new arbitrary constant．A more con－ venient way of expressing（3．17）is to write：

$$
\begin{align*}
\Omega A & =e^{i} \cos ^{-1}\left(\frac{c k_{0}}{2 \omega}\right) \\
& =\cos \left(\cos ^{-1}\left(\frac{c k_{0}}{2 \omega}\right)\right)+j \sin \left(\cos ^{-1}\left(\frac{c k_{0}}{2 \omega}\right)\right) \\
& =\frac{c k_{0}}{2 \omega}+j\left(1-\left(\frac{c k_{0}}{2 \omega}\right)^{2}\right)^{\prime} \\
& =\frac{\omega_{0}}{\omega}+j\left(1-\left(\frac{\omega 0}{\omega}\right)^{2}\right)^{1} \tag{3.18}
\end{align*}
$$

$c k \mathrm{a} / 2$ having been substituted by ω_{0} ．The arbitrary constant A can be evaluated from the condition imposed on horns to be purely resistive at higher frequencies，i．e．，for ω tending to infinity Ω ap－ proaches mity．Whence $A=j$ ，and

$$
a=\frac{\omega_{n}}{j \omega}+\left(1-\left(\frac{\omega_{0}}{\omega}\right)^{2}\right)^{1} .
$$

The formur Eq．（3．15）integrates to：

$$
\begin{equation*}
\Theta=\theta_{0} c^{k_{u} z}, \tag{3.19}
\end{equation*}
$$

and the admittance of horts satisfying 3.14 is：

$$
\begin{equation*}
y=\Theta_{n} e^{\alpha_{0}}\left(\frac{\omega_{0}}{j \omega}+\left(1-\left(\frac{\omega_{g}}{\omega}\right)^{y}\right)^{b}\right) . \tag{3.20}
\end{equation*}
$$

The previous relation（3．19）shows that the exponential horn is the only horn whose frequency characteristics remain unclanged along its length． Another useful application of the admittance equation is to consider the cases for which the equation is integrable in finite terms．When $S=S(x)$ is of the form x^{\prime} ，Eq．（3．9＇）is ；

$$
\begin{equation*}
x^{2} \frac{d y}{d x}-b y^{2}=-b x^{2} ; \quad b=\frac{j \omega}{c} \tag{3.21}
\end{equation*}
$$

The same expression can be rewritten in the form：

$$
\begin{equation*}
x^{(1-a)} \frac{d y}{d x}-b y^{2}=-b x^{(2-2 a)} \tag{3.22}
\end{equation*}
$$

where $r=1-n$ ．
It is shown in treatises on differential equations ${ }^{0}$ that for the particular case of（3．22），the equation is intergrable in finite terms whenever $(1 \pm a) / 2$ is it positive integer．This sets for the exponent $r=1-a$ the values $2,4,6, \cdots$ ．The solutions integrable in finite terms are of practical importance since they will give an idea of the rate of variation of the impedance with the llare of the horn without per－ forming eliborate computations．

The solution for a few values of r have been com－ puted and are given below：

$$
\begin{align*}
& r=2, \quad S=x^{2}, \quad y=\left(\frac{1}{b x}+1\right) x^{2}, \\
& r=4, \quad S=x^{4}, \quad y=\frac{x^{x}\left[\frac{3}{b x}\left(1+\frac{1}{b x}\right)+1\right]}{\left(1+\frac{1}{b x}\right)} . \tag{3.23}
\end{align*}
$$

[^4]It is easy to check that the first eximple corresponding to the conical horn yields for the specific impedance at the throat:

$$
Z_{a y p o c}=\frac{(\rho c)}{y} S=\rho c\left(\frac{j \omega x}{c+j \omega x .}\right)
$$

which is the known answer.
The horn contours having for solutions (3.23) have been specially chosen to show the superiority of the Ricatti equation over Webster's equation in determining the impedance whenever the equation is easily solvable.
The function S occurring in the impedance equation is a continuous function of the independent variable x. Furthermore, for flaring horns S grows monotonically with x. . It is easily deduced from Eq. (3.8) that as $S(x)$ grows indefinitely with x, Z tends to zero. As a result, Poincare's asymptotic series ${ }^{7}$ are useful in solving the equation. The procedure, however, is not always easy because of the non-linear character of (3.8). As an illustration of the method, the case of $S=x, x^{2}$ is again considered. The impedance equation is rewritten for convenience as:

$$
\frac{\partial z}{\partial x}=b\left(S z^{4}-\frac{1}{S}\right)
$$

with

$$
s=\frac{Z}{\rho c} ; \quad b=\frac{j \omega}{c}
$$

z is now sulstituted by an asymptotic series expansion:

$$
z=\frac{a_{1}}{x}+\frac{a_{2}}{x^{2}}+\frac{a_{3}}{x^{3}}+\cdots
$$

Comparison of the coefficients of equal powers of x yiedds for the a_{n} :

$$
\begin{gathered}
a_{1}=0, \quad a_{1}=1, \quad a_{\mathrm{a}}=-\frac{1}{b}, \quad a_{4}=\frac{1}{b^{2}}, \cdots, \\
a_{n}=\frac{(-1)^{n}}{b^{n-1}}, \cdots,
\end{gathered}
$$

Hence:

$$
\begin{aligned}
z & =\frac{1}{x^{2}}\left(1-\frac{1}{b x}+\frac{1}{(b x)^{t}}, \cdots\right) \\
& =\frac{1}{x^{2}}\left(\frac{1}{1+\frac{1}{b x}}\right)=\frac{b}{x(1+b x)}
\end{aligned}
$$

yiekding the known result.
?T. J. i'A. Bromwich, Introduction to the dheory of infinite series (MtacAliflan Company, Ltd., Loudon, 1908), p. 34.4 .

The use of asymptotic series is also effective for $S=x^{n, n}, n$ any integer. But it becomes very laborious when S is a polynomial expression.
It is seen from the previous discussion that the electrical analogy is not of mueh use in solving the infinite horn. This has already been pointed out in Section 2. The method, however, is very powerful for the horn of finite length. This will now be considered.

(ii) The Horn of Finite Length

The line is again visualized as a number of quadripoles $\left(a_{1}\right),\left(a_{2}\right), \cdots,\left(a_{n}\right)$ in cascade. The characteristic matrix for the finite length of line l is then readily given, as is known in the theory of matrix algebra, by the expression:

$$
\begin{equation*}
(a)_{t}=\left(a_{1}\right)\left(a_{t}\right) \cdots\left(a_{n}\right) \tag{3,24}
\end{equation*}
$$

Neglecting all infinitesimals of higher order, the matrix of an individual quadripole r is:

$$
\begin{array}{r}
\left(a_{r}\right)=\left[\begin{array}{cc}
1 & \frac{j \omega \rho \Delta x}{S_{r}} \\
\frac{j \omega S_{r} \Delta x}{\rho c^{2}} & 1
\end{array}\right] \\
=(1)+\left(\begin{array}{cc}
0 & j \omega \rho / S_{r} \\
j \omega S_{r} / \rho c^{r} & 0
\end{array}\right) \Delta x \\ \tag{3.25}
\end{array}
$$

where

$$
\epsilon_{11, r}=0=\epsilon_{13, r} \quad \text { and } \quad \epsilon_{12, r}=j \omega_{\rho} / S_{r}, \quad \epsilon_{11, r}=j \omega S_{r} / \rho c^{2}
$$

On substituting the value of (ar) in (3.24), a new expression for (n), is found. This is:

$$
\begin{align*}
&(a)_{t}=\left((1)+\left(\epsilon_{i j, l}\right) \Delta x\right)\left((1)+\left(\epsilon_{i, 3}\right) \Delta x\right) \\
& \cdots\left((1)+\left(\epsilon_{i j, n}\right) \Delta x\right) \\
&=(1)+\frac{1}{1} \sum_{i}\left(\epsilon_{i}\right) \Delta x+\frac{1}{2!} \sum_{i, j}^{\prime}\left(\epsilon_{i}\right)\left(\epsilon_{i}\right) \Delta x^{2} \\
&+\frac{1}{3!} \sum_{i, j, k}^{\prime}\left(\epsilon_{i}\right)\left(\epsilon_{j}\right)\left(\epsilon_{k}\right) \Delta x^{3}+\cdots \tag{3.26}
\end{align*}
$$

In the above expression (ϵ_{r}) has been written for ($\epsilon_{k, f}$) and the sign' indicates that the $i=j$ term (or $i \neq j=k=\cdots=n$) has been omitted.
In the limiting case when Δx tends to zero, n grows indefinitely, indicating a transition from a discontinuous to a smooth line. The matrix (a),
ultimately becomes:

$$
\begin{align*}
(a)_{t}=(1) & +\int_{0}^{1}(\epsilon(x)) d x+\frac{1}{2!} \\
& \times \int_{0}^{1} \int_{0}^{x}(\epsilon(x))\left(\epsilon\left(x^{\prime}\right)\right) d x \cdot d x^{\prime}+\cdots \tag{3.27}
\end{align*}
$$

It will be now proved that the infinite series of matrices leads to a converging process.
Let $E_{i j}$ be an upper bound for the modulus of a typical element $\epsilon_{i j}$ then $\left|\epsilon_{i j}\right| \leqslant E_{i j}$. Let E be a positive number such that $E_{i j} \leqslant E$ for all elements, Then,

$$
\int_{0}^{1}(\epsilon(x)) d x \leqslant E \cdot l(1) .
$$

Similarly

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{x}(\epsilon(x))\left(\epsilon\left(x^{\prime}\right)\right) d x \cdot d x^{\prime} & \leqslant \int_{0}^{l} \epsilon(x) d x \int_{0}^{e} \epsilon\left(x^{\prime}\right) d x^{\prime} \\
& \leqslant \int_{0}^{1} E(1) \cdot E \cdot l(1) d l \\
& \leqslant \frac{E l^{2}}{2!}(1)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \Sigma=(1)+\int_{0}^{1}(\epsilon(x)) d x+\int_{0}^{l} \int_{0}^{x}(\epsilon(x))\left(\epsilon\left(x^{\prime}\right)\right) d x d x^{\prime} \\
&+\iint_{1}^{1} \int \cdots \leqslant(1)+\frac{E l}{1!}(1) \\
&+\frac{E^{n} l^{2}(1)}{2!}+\frac{E^{3} l^{\prime}(1)}{3!}+\cdots
\end{aligned}
$$

Each of the series defining the elements of Σ is less than $S=e^{E t}$ which is bounded. The series \sum is then an absolutely converging series of matrices. Since $(a)_{t}$ is smaller than \sum, then the series defining the individual $a_{i j}(l)$ are also converging series.

The individual elements $a_{i j}$ are thus given by;

$$
\begin{aligned}
a_{11}(l)=1 & +\frac{1}{2!} \int_{0}^{1} \int \frac{j \omega \rho}{S(x)} \frac{j \omega S\left(x^{\prime}\right)}{\rho c^{2}} d x d x^{\prime} \\
& +\frac{1}{4!} \iint_{0}^{1} \iint \cdots \\
a_{13}(l)= & \int_{0}^{1} \frac{j \omega \rho}{S(x)} d x+\frac{1}{3!} \iint_{0}^{1} \int \frac{j \omega \rho}{S(x)} \\
& \times \frac{j \omega S\left(x^{\prime}\right)}{\rho c^{2}} \frac{j \omega \rho}{S\left(x^{\prime \prime}\right)} d x d x^{\prime} d x^{\prime \prime}+\cdots
\end{aligned}
$$

$$
\begin{array}{r}
a_{21}(l)= \\
\int_{0}^{l} \frac{j \omega S(x)}{\rho c^{2}} d x+\frac{1}{3!} \iint_{0}^{1} \int \frac{j \omega \rho}{S(x)} \\
\times \frac{j \omega S\left(x^{\prime}\right)}{\rho c^{2}} \frac{j \omega S\left(x^{\prime \prime}\right)}{\rho c^{2}} d x d x^{\prime} d x x^{\prime \prime}+\cdots \\
a_{22}(l)=1+\frac{1}{2!} \int_{0}^{l} \int \frac{j \omega \rho}{S\left(x^{\prime}\right)} \frac{j \omega S(x)}{\rho c^{2}} d x d x^{\prime} \tag{3.28}\\
+\frac{1}{4!} \iint_{u}^{l} \iint \cdots
\end{array}
$$

The previous series are very rapidly converging and are consequently useful for numerical computations. There is no restriction on the horn contours which can be investigated as long as they satisfy the original requirements of Webster's approximations.

To determine the input impedance at the throat of the horn, use is made of the pair of relations $(3,1)$ which are rewritten in the more convenient notation:

$$
\begin{align*}
& Y_{0}=a_{11}(l) V_{1}+a_{12}(l) I_{i} \\
& I_{0}=a_{21}(l) V_{1}+a_{21}(l) I_{i} \tag{3.29}
\end{align*}
$$

Dividing these two equations and substituting for $V_{n} / I_{0}=Z_{0}$, the input impedance at the throat, and for $V_{t} / I_{l}=Z_{l}$, the lond impedance, it is then found,

$$
\begin{equation*}
Z_{0}=\frac{a_{11}(l) Z_{i}+a_{12}(l)}{a_{21}(l) Z_{i}+a_{2 n}(l)} \tag{3.30}
\end{equation*}
$$

The load impedance Z_{t} is taken ats a Rayleigh piston of area equal to that of the mouth of the horn, or for a slightly better approximation, as a spherical cap having for base the mouth of the horn. Expression (3.30) yields the recpuired result. The formulation of the elements of (a), in closed form is sometimes possible to be found without mond labor; this has been done in at companion paper.

4. THE SECOND APPROACH: THE SINGULARITIES OF WEBSTER'S DIFFERENTIAL EQUATION

The relative easiness with which a differential equation can be solved depends a great deal on the number and kind of its singularities. The present state of the theory allows the possibility of successfully coping with any second order linear differential equation having three or less singular points. The presence of irregular singularities increases the complexity of the solution to such an extent that very few equations with more than two irregular singularities have been investigated, Very little is known about equations having four or more singularities.

The proposed scheme of study in this section is to

Fig, 2. Horn contours for $m=2$ and $N_{0}=7.4 \times 10^{-2}$.
cast the Webster equation in a suitable form reducible to canonical types representative of equations with pre-assigned numbers of singular points. Only standard types yielding known solutions have been considered. The conditions required to reduce the Webster equation to any of the canonical equations will define families of horn contours. It is readily seen that the study is very general, since it deals with families of horns instead of an individual horn contour such as is the case in Webster's equation. The new relations defining the horns are usually simpler to solve than the origimal Webster equation.

A transform of the Webster equation

$$
\Phi^{\prime \prime}+\left(S^{\prime} / S\right) W^{\prime}+k^{2} I=0
$$

lending itself to better manipulations is determined by substituting the dependent variable $\$$ by the product $\psi \cdot \phi$. The above then reduces to

$$
\begin{equation*}
\phi^{\prime \prime}+\phi^{\prime}\left(\frac{S^{\prime}}{S}+2 \frac{\psi^{\prime}}{\psi}\right)+\phi\left(\frac{S^{\prime}}{S} \frac{\psi^{\prime}}{\psi}+\frac{\psi^{\prime \prime}}{\psi}+k^{2}\right)=0 . \tag{4.1}
\end{equation*}
$$

The primes refer to clifferentiation with respect to the complex quantity z, which can take any value on the whole complex plane.

The original Webster equation having an irregular singular point at infinity, the cises considered must also have infinity as an irregular singular point. Any attempt at removing this singular point will lead to the physically meaningless result of the horn contour S depending on the frequency parameter k. The truth of this statement will become evident later in the discussion.

The second method of approach is now illustrated on the standard type of equations with one regular and one irregular singular point. The most general
form of this class is;

$$
\begin{equation*}
\frac{d^{2} \phi}{d s^{2}}+\left(A_{0}+\frac{A_{1}}{z}\right)_{d \bar{d}}^{d z}+\left(B_{0}+\frac{B_{1}}{z}+\frac{B_{2}}{z^{2}}\right) \phi=0, \tag{4.2}
\end{equation*}
$$

the A 's and B 's being constants.
An investigation of all passible combinations which make the previous Eq. (4.1) equivalent to $(4,2)$ will lead to the horn contours allowing Webster's equation to reduce to the form (4.2).
Comparison of the coefficients of the derivatives of equal order of (4.1) and (4.2) gives:

$$
\begin{gather*}
\frac{S^{\prime}}{S}+2 \frac{\psi^{\prime}}{\psi}=A_{0}+\frac{A_{1}}{z} \tag{4.3}\\
\frac{S^{\prime}}{S} \frac{\psi^{\prime}}{\psi}+\frac{\psi^{\prime \prime}}{\psi}+k^{y}=B_{0}+\frac{B_{1}}{z}+\frac{B_{3}}{z^{2}} . \tag{4.4}
\end{gather*}
$$

:und

The former Eq. (4,3) has for solution

$$
\begin{equation*}
\psi^{3}=\frac{g^{11_{1} e_{02}}}{S} \tag{4.5}
\end{equation*}
$$

Substituting the above value of ψ in the lefthand site of Eq. (4.4), then

$$
\begin{align*}
& \frac{S^{\prime}}{S} \frac{\psi^{\prime}}{\psi}+\frac{\psi^{\prime \prime}}{\psi}+k^{2}=-\frac{1}{2} \frac{S^{\prime \prime}}{S}+\frac{1}{4}\left(\frac{S^{\prime}}{S}\right)^{2}+k^{2} \\
& \tag{4,6}\\
& \quad+\frac{1}{4}\left(A_{0}+\frac{A_{1}}{z}\right)^{2}-\frac{1}{2} \frac{A_{1}}{s^{2}} .
\end{align*}
$$

If this study is restricted to horns made from surfaces of revolution, the S can be replaced by $S=\pi \xi^{2}$. The function $\xi=\xi(x)$ is then the horn contour and the rotation of $\xi(x)$ about the x axis generates the surface S. Equation (4.4) ultimately becones:
$-\frac{\xi^{\prime \prime}}{\xi}+k^{2}+\frac{1}{4} A_{0^{2}}+\frac{A_{1}}{2 s^{2}}\left(\frac{A_{1}}{2}-1\right)$

$$
\begin{equation*}
+\frac{1}{2}\left(\frac{A_{0} A_{1}}{z}\right)=B_{0}+\frac{B_{1}}{z}+\frac{B_{2}}{z^{2}} . \tag{4.7}
\end{equation*}
$$

Fic, 3. Equivatent cirenit for inpue impedance of new horns, Z_{p} is the impedance of the Bessed horn and (- jw $\mathrm{I}^{\prime} / \mathrm{r}^{\prime}$) is the incremental inupedance duce to the change of flare nt the throat.

Consideration of (4.7) shows that the equation in ξ has been reduced to its normal form, i.e., the most general the differemiail equation for ξ can have. For this reason Eq. (4.7) will be referred to as the generating equation.

Except for B_{0}, the constants appearing in the generating equation:

$$
\begin{equation*}
G\left(\xi^{\prime \prime}, \xi_{1}, z_{1} A_{0}, A_{1}, B_{0}, B_{1}, B_{2}\right)=0 \tag{4,8}
\end{equation*}
$$

can be arbitrarily chosen. To every selection there corresponds one family of horns. The number of families which can thus be generated is of the order of ∞^{4}. It is also apparent that B_{0} cannot be assigned any value at will since ξ must be independent of k to be playsically realizable. Thus there are only a finite number of selections of B_{0} which will make $0 G / \partial k \equiv 0$.
The preceding diseussion will be illustrated on a number of examples.
(1) Let the following choice of arbitrary constants be made:

$$
\begin{align*}
& B_{1}=\frac{A_{0} A_{1}}{2}, \\
& B_{2}=\frac{A_{1}}{2}\left(\frac{A_{1}}{2}-1\right), \\
& B_{0}=k_{a^{2}}^{2} . \tag{4.9}
\end{align*}
$$

The generating equation becomes

$$
\begin{equation*}
\xi^{\prime \prime}-\frac{1}{1} A_{0}{ }^{1} \xi=0 \tag{4,10}
\end{equation*}
$$

whose general solution is:

$$
\xi=\frac{1}{(\pi) 1}\left(\cosh \frac{A_{0}}{2} \varepsilon+T \sinh \frac{A_{0}}{2} s\right)
$$

when $S(0)=1$. This family of horns has already been discussed by Salmon ${ }^{k}$ and will not be considered here. T is the characteristic parameter of the family.
(2) As a second example, let the following choice be made:

$$
\begin{align*}
& B_{u}=k^{2}, \\
& B_{1}=\frac{A_{0} A_{1}}{2}, \\
& A_{1}=2, \\
& A_{0}=0 . \tag{4.11}
\end{align*}
$$

The above will lead to the generating equation:

$$
\begin{equation*}
\xi^{\prime \prime}+\frac{\xi}{z^{2}} B_{z}=0 \tag{4.12}
\end{equation*}
$$

- See reference 2(b), p. 199.

Fici. I. Sjecilic input impedance for new family with $m=2$ and $N_{s}=7.4 \times 10^{-2}$.

It is noticed that $\xi_{1}=\mathrm{s}^{m}$ is a solution. The exponent m must satisfy the condition:

$$
m(m-1)=-B_{2}
$$

whence

$$
\begin{equation*}
m=\frac{1}{1} \pm\left(\frac{1}{1}-B_{2}\right)^{3} \tag{4.13}
\end{equation*}
$$

For m to be a real quantity (yielding physically realizable horns) $-B a+t \geqslant 0$. The second solution of (4.12) can now be found from

$$
\begin{align*}
\xi_{2} & =\xi_{1} \int \frac{d z}{\xi_{1}{ }^{2}} \\
& =z^{m} \int \frac{d z}{z^{m \prime \prime \prime}} \tag{4.14}
\end{align*}
$$

The general solution of the generating equation is:

$$
\xi=N_{u} z 1(1+P \log z) \quad \text { for } m=\frac{1}{2}
$$

or

$$
\begin{equation*}
\xi=N_{0}\left(z^{m}+\frac{P}{(1-2 m) z^{m-1}}\right) \text { for } m \not z^{\frac{1}{2}} \tag{4.15}
\end{equation*}
$$

P, one of the two arbitrary coustants of (4.15) is the characteristic parameter of the family of horns represented by $m ; N_{0}$ is the other constant. Horn contours corresponding to different values of P for $m=2$ have been drawn in Fig, 2, P can be positive or negative. The family of contours thus vary about a mean corresponding to the contour with $P=0$.
When the values of the constants defined by (4.11) are substituted in (4.2) and (4.5), these
equations become:

$$
\frac{d^{2} \phi}{d z^{2}}+\frac{2}{z} \frac{d \phi}{d z}+\left(k^{2}+\frac{B_{2}}{z^{2}}\right) \phi=0,
$$

and

$$
\begin{equation*}
\psi=\frac{s}{(S)^{i}} \tag{4.16}
\end{equation*}
$$

The first of the above expressions is identified as a Bessel equation. Using the conventional procedure of discarding solutions of (4.16) representing converging cylindrical waves, ${ }^{1}$ it is found :

$$
\begin{equation*}
\phi=\frac{A^{\prime}}{(z)!}\left(J_{p}(k z)-j Y_{n}(k z)\right) \tag{4.17}
\end{equation*}
$$

where A^{\prime} is an arbitrary constant and $p^{2}=\left(-B_{2}+\frac{1}{1}\right)$.
The general solution of Webster's equation for these horns is:

$$
\begin{equation*}
\text { Jə } \psi \cdot \phi=A^{\prime}\left(\frac{\Sigma}{S}\right)^{\prime}\left(J_{p}(k s)-j Y_{p}(k s)\right) . \tag{4.18}
\end{equation*}
$$

Substituting the value of S as determined from (4.15), the former Eq. (4.18) reduces to:

$$
\begin{align*}
\Psi & =\frac{A^{\prime}}{(\pi)^{4}} \frac{z^{-(m-1)}}{\Gamma^{\prime}}\left(J_{p}(k z)-j Y_{p}(k z)\right) \\
& =\frac{A}{1^{1}} \cdot a^{-p}\left(J_{n}(k z)-j Y_{p}(k z)\right) \\
& =A\left(\Gamma^{-1} \cdot \Delta\right) \tag{4.19}
\end{align*}
$$

where $p=\left(m-\frac{1}{3}\right)$ by virtue of $4.13, A=A^{\prime} /(\pi)^{\prime}$,

$$
\begin{array}{rlrl}
\mathrm{I} & =N_{0}\left(1+\frac{P}{(1-2 m) z^{2 m-1}}\right), & \text { for } m ;=1 \\
& =N_{0}\left(1+\frac{P}{\log z}\right), & & \text { for } m=\frac{1}{3}
\end{array}
$$

-Sce reference 2(a).
and

$$
\Delta=z^{-p}\left(J_{p}(k z)-j Y_{p}(k z)\right)
$$

The input impedance of the horn is deduced from

$$
\begin{equation*}
Z=\frac{j \omega \|^{\prime}}{\psi^{\prime}}=\frac{1}{\frac{\Delta^{\prime}}{j \omega \Delta}-\frac{\Gamma^{\prime}}{j \omega I^{\prime}}} \tag{4,20}
\end{equation*}
$$

The advantage of rewriting (4.18) in the form $(4,19)$ is now apparent. The above Eq. $(4,20)$ shows that the impedance of the new " m " horns can be considered as the parallel combination of $j \omega \Delta / \Delta^{\prime}$ and - $-\mathrm{j} \omega \mathrm{I} / \mathrm{l}^{\prime \prime}$ (Fig. 3). The former impedance can be identified with the solution for the conventional Bessel horns $S=N_{0} \xi^{m}$.
The resistive part of the iunpedance Z has been numerically evaluated for the horn contours of Fig, 2. The results of the computations are drawn in Hig, 4. It is noticed that horns with positive values of the parameter P show an improved response at the low frequencies,
The preceding detailed discussion has fully illustrated the use of the second method of approach and forther examples have been deemed umecessary. The formal solution of differential equations reducible to the form of (4.2) is known. ${ }^{117}$ Both of Eq. (4.2) and the generating equation yield solutions expressible in terms of condinent hypergeometric functions. Special choices of the arbitrary constants, however, can reduce the solutions to simpler functions. The generating equations resulting from differential equations having two essential singularities are harcler to solve and will usually involve Nathieu functions.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the constant encouragement and helpful criticism of l'rofessor F. V. Hunt: in connection with this investigation.

Diffraction of Sound by a Circular Disk*
 Aimered Litaisk
 Institute for Mathematios and Mechanics, Newe York University, New Jork, Nere York
 (Received April, 23, 1940)

'The near and distant diffraction fields of a circular disk of zero thickness are ploted accordiag to an exact theory. The resulta are compared wilf the Kifehboff approximation and recent experimental data.

1. INTRODUCTION

BOUWKAMP,' Spence, ${ }^{2}$ and Storruste and Wergeland have inclependently announced an exact theory of diffraction of sound by circular disks and apertures, based on the wave fiuctions of the oblate spheroid. Subsequently, Spence ${ }^{4}$ published graphs of the near and distant diffraction field for the case of the aperture, and discussed the merits of the elassical Kirchloff solution in the light of the exact values. Thus it was shown that this approximation held good even at wave-lengths greater than the radius a of the aperture, although usually expected to hold only for very short wave-lengths. The present note contains analogous graphs for the exact values of the field diffracted by the disk and reaches equivalent conclusions regarding the Kirchhoff theory. Certain simple observations presented here generalize these conclusions to all plane scatterers.

Wiener ${ }^{6}$ recently performed measurements on the surface of a thin circular metal disk scattering sound waves, in order to check an approximate theory for the fied on the surface of diffracting obstacles. ${ }^{6}$ Now that an exact solution is fimally available, it is easy to check the experimental results against it.

2. PLANE SCATTERERS. THE KIRCHHOFF ASSUMPTIONS

Consider a rigid scatterer lying entirely in a plane, say $z=0$. The total velocity potential may be split into incident and scattered parts

$$
\begin{equation*}
\psi=\psi^{(i n n)}+\psi^{(n)} . \tag{1}
\end{equation*}
$$

Now the value of $\psi^{(a)}$ on either side of the plane is

[^5]determined by
\[

$$
\begin{equation*}
\psi^{(0)}=-(1 / 2 \pi) \iint_{k=1} \psi^{(0)}(\partial / \partial n)\left(e^{i k H} / R\right) d x d y \tag{2}
\end{equation*}
$$

\]

or

$$
\begin{equation*}
\psi^{(\alpha)}=(1 / 2 \pi) \iint_{z=0}(0 \psi(\omega) / \partial n)\left(e^{i k n} / R\right) d x d d y \tag{3}
\end{equation*}
$$

that is, in terms of its values, or those of its outward normal derivative, on the plane.
The familiar Kirchhoff assumptions here assert that $\psi=\psi^{(\text {(hes }) ~ i n ~ t h e ~ p a r t s ~ o f ~ t h e ~ p l a n e ~ n o t ~ o c c u p i e d ~}$ by the sentterer, right up to the edge of the seatterer, i.e., $\psi^{(n)}=0$ there; that $\psi^{(0)}=\psi^{(\operatorname{lno})}$ on the illuminated side of the scatterer (perfect reflection) and $\psi^{(0)}=-\psi^{\left({ }^{(t n o)}\right)}$ on the shadow side (total shatow). For the case of normal incidence let us take

$$
\begin{equation*}
\psi(\mathrm{in}, 0)=\mathfrak{c}^{-i k, * *} \tag{4}
\end{equation*}
$$

Fig. 1. Re($\psi\left({ }^{(1)}\right)$ on the bright side of the disk, plateed against clistance from the center. The Nirehhoff value of this gliantity is plotted in hroken tine.
** Tinae dependence a-iwr removel.

Fic. 2. $I m(\psi(0))$ on the Iright side of whe disk, plated against distance from the center. The Kirchlaff value of this quantity is zern (Erratumi inturchange $k a=1$ and $k a=2$)

Integration in (2) is thus confined to one side of the scatterer, and for the case of the circular disk one oltains

$$
\psi \kappa^{(e)}(r, \theta)=-j a\left(e^{i t r} / r\right) J_{1}(k n \sin \theta) / \tan \theta, \quad r \rightarrow \infty ;(5
$$

the subscript K denotes values according to the Kirclihoff methot.

Fig. 3. Angular dependence of $|\psi(0)|$ at large distances from the diak whan kilal, 2, 3. Fill diuss give the exact values, broken lines the values according to the Kirchhoff solution,

The exact boundary condition, however, is
$(\partial \psi / \partial n)=0$ on the surface of the seaterer.
In general $\psi^{(1 n o)}$ and its first derivatives are finite and continuous except at the source, which we will assume not to lie on the scatterer, and $\psi^{(1)}$ and its first derivatives are finite and continuous except, perhaps, on the scatterer. As a consequence
$[\partial \psi(0) / \partial n]=0$ across the plane of the seaterer, (7) [.] denoting a discontinuity, Here $\partial / \partial n= \pm \partial / \partial z$ depending on which side of the plane is under consideration. From (3) follows the general restle, true also for an infinite sereen containing an aperture of any shape:
$\psi^{(0)}$ is odd across the plane of the scaterer.
Thus $\psi^{(0)}=0$ in the plane of, but off the scaterer, exactly as assumed in the Kirclahoff solution.
The error in the approximation therefore lies only in the assumptions on the surface of plane scatterers. In our case the assumed values are $\psi_{n}^{(0)}= \pm 1$ on the bright and shadow side, respectively. Figures 1 and 2, in which we plot the real and imaginary values of the exact $\psi^{(x)}$ on the circular disk, show that the Kirchhof assumptions are approached as averages as the ratio of diameter to wave-length increases ($k a=2 \pi a / \lambda$); the average of $\operatorname{Re}\left(\psi^{(s)}\right)$ oscillates about unity and that of $I m\left(\psi^{(0)}\right)$ about zero with decreasing amplitude as a function of the parameter ka.
In Figs. 3 and 4 are ploted the exact and Kirchhoft values of the angular part of $\left|\psi^{(s)}\right|$. At $k a>3,81$, zeros occur in $\left|\psi_{\kappa}^{(e)}\right|$ at $\theta<\pi / 2$, and near these zeros the curves for $\left|\psi^{(0)}\right|$ are noticeably flattened out. When $k a=4(\lambda=1.57 a)$ and $k a=5$ ($\lambda=1.25 a$) the Kirchhofi theory agrees very well with the exact theory, at values of 0 below those for which $\psi_{\kappa^{(0)}}=0$, the region into which most of the scattered energy is radiated.

Fita. 4. Angular dependence of $\left|\psi^{(0)}\right|$ at large tianances from the disk when ko me 4,5 .

3. COMPARISON WITH EXPERIMENT

Wiener determined the matio of excess presstre on the surface to excess pressure at the same points in the absence of a thin metal cylinder. 'This quantity is identical to our $|\psi|$. Its values on the bright side ($\eta>0$) and on the shadow side ($-\eta>0$) are plotted in Fig, 5.***

The Kirchhoff values for this quantity are +2 and 0 , respectively, regardless of $k a$. A point of particular interest about the exact values is the increasingly sharp central bright spot on the sladow side, as ka increases.

There is very good agreement with experimental values, considering that the estimated experimental error is relatively large (± 1 to 2 decibels). The discrepancy may be reduced by theoretical argument: the disk of the theoretical problem is of zero
*** η is the angular coordinate of the oblate sphoroidal system, $-1 \leqslant \pi \leqslant 1$.
thickness and only modes odd in 7 (or a) are generated in the scattered field; the experimental clisk, however, had the dimensions $a=7.5 \mathrm{~cm}$, thickness 0.25 in .

Were we to consider a non-zero spleroid, the value of ψ on its surface would be
$\psi\left(\eta, \xi_{0}\right)=e^{-i k u r t_{0}+}+\sum_{i=0}^{\omega}\left[2(-1)^{t+(t)} v_{l}^{\prime}\left(\xi_{0}\right)^{(\mu)} v_{l}\left(\xi_{0}\right) /\right.$

$$
\begin{equation*}
\left.q_{1} N_{i}^{(3)} v_{1}^{\prime}\left(\xi_{0}\right)\right] w_{1}(\eta), \tag{9}
\end{equation*}
$$

where we have used the notation of Spence. \dagger ' The summation now is over all positive integers l, and represents the scattered fied $\psi^{(0)} ; \xi_{0}$ is the coordinate identifying the diffracting oblate spheroid. The value of ξ_{0} such that its average thickness corresponds to the proportions of the experimental disk is 0.054 .
\dagger See this paper for details.

This is a small value so that the even modes (l even) make a small contribution and the old modes are changed by little from their values for $\xi_{0}=0$. If, furthermore, $k a$ is small, it is reasonable to suppose that among all even modes the $l=0$ mode predominates. This is the only mode which does not change sign over the entire spheroid since $u_{0}(\eta)$ is the only even angular function without zeros in the
range of η. Consequently the values of $\psi^{(0)}(\eta, 0)$ and of $\psi^{(0)}\left(\eta, \xi_{0}\right)$ will not intersect when plotted against η. Just such a situation prevails at $k a=2,3$ in Fig. 5 when we compare the exact and experimental curves. As an example we have plotted the result of our theoretical correction for $k a=2$. It is seen that a substantial part of the discrepancy is removed by such a correction.

The Diffraction of Sound by Rigid Disks and Rigid Square Plates*

Francis M. Whener
Bell Telephone Lahoratories, Murray Hill, New Jersey

(Received April 30, 1949)

A rigid circular plate was exposed to an essentially plane progressive solnd wave, and the sound pressure pat various points on the surface mensured rehative to the free-fietil pressure p_{0} in the undisttrbed incident wave by means of a sumath probe microphose, The diffraction effect $\left|p / p_{o}\right|$ was determined ins a fanction of angle of incidence over a range of frecpencies beginaing with "long" wave-lengths and extending into the region where the radius " of the obstacle approximately equals the wave-lenkth. Expressed in customary notation, $1<k a<8$, where k is the wave number of the incident wave. Datat were obtaned for angles of incidence $0=0,45,135$, and 180 degrees, where θ is measured with respece to the axis of the olsitacle, Simiar measuremente for $0=0$ and 180° were made for a rigid square plate with side $2 n$.
Approximate contour maips of the quantity $\left|p / p_{a}\right|$ in decibels have been prepared from the experimental data portraying the pressure distribution on the sarface of the plates.
The experinemal results are compared with computed values of $\left|p / p_{0}\right|$ oltained from an approximate theory in which an attenpt is made to solve the problem in terms of a scattered potential calculated as if ilse face of the obstacle were surfomeded by an inginite bathle. The agrement is quite good on the "illuminated" side of the phates, i.e., for 0 at

I. INTRODUCTION

I^{N}N a recent note ${ }^{\text {in }}$ the Letter to the Editor column a brief report was made on a series of measurements designed to explore the sound pressure at various points on the surface of a rigia circular phate in an approximately plane wave as a function of frecuency and angle of incidence. Similar measurements were performed on a rigid square plate but for the ease of perpendicular incidence only. It is the purpose of this paper to present these results in detail and to compare them with theory.
The ease of the clisk of zero thickness can be

[^6]and 45° and an the "blamow" side for $\theta=180^{\circ}$. The iscenment for 135 degree incidence is generally poor, although the computed values show the trends of the experimental data in many instances, At low frequencies the theary gives values which are somewhat ton high on the illuminated side and too low on the shaded side.

The valtes of $\left|p / p_{0}\right|$ obtained from the exact expression of the diffraction of a platne wave by a disk of zero thicknens and for perpendicular incidence are found to lee in good agreement with experiment and the approximate theory on the illuminated side (0×0) and they agree reasonaldy well on the shided side $\left(0 \times 180^{\circ}\right)$ for $1 \leq h n \leq 5$. The region near the edge shows discrepanches which are to be expected from dice finite thickness of the circular plate (approx. 42/12).

It is concluded that the approximate theory mentioned above is caproble of predieting the diffaction effect $\left|p / p_{a}\right|$ on the illuminated side of the obstaches in the frequency range covered by this study for the angles of fucidence investigated. On the slondow side the theory can be expected to yided usably ipproximate answers only for $\theta=180^{\circ}$. There are reasomalbe graunds for the assumption that similar predictions can be minde for points on or "near" the surface of "thin" plane oldsbactes of arbitrary slapee and for other acute angles of incidence not too close to $0=90^{\circ}$.
solved exactly by means of spheroidal wave functions, ${ }^{2}$ Although interest in the diffraction of acoustic and electromagnetic waves by disks and circular apertures has incrensed recently and a number of theoretical papers have been published on the subject,* only the field at large distances is generally considered. Furthermore, the tabulation of the spheroidal wave functions is as yet incomplete. ${ }^{3}$ No exact solution is known at present for the case of the square.
Leitner has obtained numerical results for the

[^7]sound pressure on the surface of a rigid disk of zero thickness for perpendicular incidence for $k a=1,2$ 3, 4, 5. His results are compared with the experimental data discussed in this study.

Sivinn and O'Neils and Multer et al. ${ }^{5}$ have used an approximate method to predict the sound pressure at the center of the plane face of rigid obstacles of various shapes. The same method is used here in an attempt to predict the sound pressure over the whale plane surface of a rigid disk and a rigid square plate.**

This method consists essentially of the following: The total pressure at the surface of the obstacle in question is separated formally into an incident pressure and a scattered pressure. The following two suppositions then are made: (1) The scattered pressure is computed by assuming that the plane surface of the obstacle oscillates (fictitionsly) in an infinite rigid baffe with a certain normal velocity distribution equal and opposite to the distribution of the particle velocity component of the incident wave normal to the surface, This makes the normal particle velocity of the total field on the surface equal to zero, in accordance with the required boundary condition. (2) The effect of all other surfaces of the obstacle is neglected. Note that. the method imposes no restriction on the shape of the surface of the obstacle on which the pressure is to be computed except that the surface be plane.*** That the method is approximate may be seen from the fact that the calculated seatered pressure does not vanish, as it should, in the plane of the surface of whe obstacle outside its boundary, except for grazing incidence.

Detpite these scemingly rough approximntions surpriningly good agreement is obtained on the illuminateill side of the plates with the results of the micasurements at hand and with the results of the ewact theory as far as available. Agreement on the "shadow" side is generally poor except for $\theta=180^{\circ}$. Since there is good reason to believe that this state of affairs should also hold for plane obstacles of "small" thickness \dagger and arbitrary shape, a valuable tool is therefore at hand to handle, within limits, the wide variety of cases where no exact solutions are available or possible with known methods.

II. dxperimental technigue

The technique is essentially the same as used in the tests on spheres and cylinders described in an earlier paper. ${ }^{7}$

[^8]

Fig. 1. Gemetry.
The sound pressures p att the strfaces of the plates and in the free fied were determined, in magnitude, by means of a small probe microphone whose effective area was that of a circle less than 0.1 cm in diameter. They are expressed throughout in terms of the free-field pressure po. The ratio $\left|p / p_{0}\right|$ was taken to be a measure of the diffraction effect. The incident sound field was produced by a sound source of conventional design in a sound chamber essentially free from acoustic wall retlections. The testing geometry satisfich the commonly' cited criteria for an approximately plane wave field. In addition, measmements were made to cetermine the actual variations of the free-fied pressure near the location of the plates. It was lomd that these variations measured inside a spherical region whose clameter was approximately' $2 a$ did not exceed ± 2 db for frequencies $u p$ to $k u=5$ and were dess than ± 3 dis for the remainder of the rauge. A limited number of measatements of $\left|p / p_{0}\right|$ in a larger chamber with a larger distance between somod source and obstacles showed only small differences attributable to the changed testing geonelry, "he data reported in this study can therefore be considered as having been obtained under plane-wave conditions to a reasomable degree of approximation.

The experimental errors in general are expected to incrense with frequency, to increase at points near the edge due to the large pressure gradient: uxisting there, to decrease with increasing absolate value of $\left|p / p_{a}\right|$. As a consequence, the frequency range at whicl valid meastrements could be obtained on the shadow side was not quite as large as for measurements on the illuminated side. In addition, the number of positions used to explore the pressure on the shadow side become rapidly inadequate with increasing frequency due to the large Dluctuations of the pressure with position.

The obstackes were made from carefully machined brass plates of $\frac{1}{4}$-inch thickness with a diameter or side of $2 a=15 \mathrm{~cm}$. Radial lines from the center were
ruled on their surfaces at intervals of 45 degrees. The distance from the center to the edge along these fines was divided into four equal parts marking the points at which the pressure measurements were made, i.e., 33 points for cach angle of incidence. The pressures at acoustically symmetrical points were averaged. The free-fied pressure was determined at the position of the center of the obstacle. No evidence of disturbing vibrations of the plates was observed.

A good measure of validity of the experimental procedure has already been established by comparisons with the theoretical results for the sphere in the earlier paper. ${ }^{7}$ Further weight is added by the favorable results of the comparison of the present
meastrements with the exact theory as discussed below.

III. RESULTS

Disk

Figure 1 will serve to explain the geometry. The direction of propagation of the incident wave makes an angle θ with the axis of the disk of rarlius a. The watve front interseets the disk along a vertical dianeter, A point P on the disk is fixed in angular position by the angle ϕ.
Figure 2 silows the pressure distribution for normal incidence $(\theta=0)$ together with the values computed from the approximate theory. \dagger the agreement is seen to be remarkally good. At the

Fic. 2, Slowing the ratio of the sound pressure p to the freethe bound pressure p to the frec-
fiek pressure p_{0} on the surface fiek pressure p_{a} on the surface of a rigid disk in the fied of a Plate wave of wave number a, The magnitude of chis ratio, in discibels, is photed alony a radius,
 npproximate theory are indi.: approximate theory are indicated as woll as those oblainent from the exich one tor atisist of: zero , hieknesss In ididition, the crosics (X) denote tha experithental points obliained for a rigid circular cylinder of radius
a ind lengell 2 af . 0 and lengill 2 at

It In view of the considerable labor involved computations have not been mate for all vilues of ka shown in this and the following graplas,
low frequencies, the theoretical values are consistently somewhat too high. This is also true for other angles of incidence $0<90$ degrees, Conversely, as can be seen from the graphs presented later in this paper, the theoretical values are too low for low frequencies and angles of incidence $0>90$ degrees. A similar situation exists at all frequencies at the edge. Such differences are not too surprising considering the assumption of an infinite bafle: implicit in the theory.
The agrement of the experimental values with those computed from the exact theory is likewise good, including the low frequencics, At other frequencies, some of the largest deviations occur at the edge, as expected, since the theory applies to a disk of zero thickness. According to Fig. 2 and the data shown below in Fig, 4 for $\theta=180^{\circ}$ the plate acquires "zero thickness" for all practical purposes for wave-lengths at least two orders of magnitude larger than its thickness.
The comparatively large disagrement for the center region at $k a=5$ can be most likely ascribed to the fact that the pressure there changes very rapidly with frequency. An error in the frequency setting of the oscillator of 1-2 percent may result in an error in $\left|p / p_{0}\right|$ of $1-2 \mathrm{db}$.
To obtain an estimate of the role which is played by the back surface of the disk, the measurements were repeated with a similar obstacle with the back surface "removed," namely a circular cylinder wids the same diameter and length $2 a$. While a good pairt of the differences between disk and cylinder must be due to experimental errors, it is clear that at frequencies up to about $k a=5$ the approximate theory predicts the results for the cylinder somewhat better than for the disk. This is not unexpected, especiatly at the low frequencies, in view of the assumptions underlying the approximate theory. To help visualize the pressure distribution for normal incidence, Fig. 2 of an earlier paper ${ }^{\mathbf{B}}$ may be consulted which applies here to a first approximition.

Figure 3 shows the diffraction effect plotted as a function of frequency for three points on the clisk for $0=0$ together with the corresponding theoretical values. It was in the form of graphs such as this one that the experimental data were first plotted and the pressure distributions derived therefrom.
The pressure distribution for $\theta=180$ degrees is slown in Fig. 4. Note again, that the approximate theory agrees somewhat better with the data for the cylinder than with the results for the disk. Comparatively large pressure fluctuations as a function of position oecur here, and for angles of incidence $\theta>90$ degrees in general, with pressure minima as low as 10 dll or more below the free-field

[^9]

Firc. 3. Showing $\left|p / p_{0}\right|$ in decibela os. frequency for three points on the disk :inhl $\theta=0$, together with the thenretical valises.
values. The agreement with the exact theory is not quite as good as betore, especially at $k a=2$ and 3 . The obvious explanation of an error in the measurement of p_{0} is possible but not very probable in view of the presence of the independently measured cylinder data,

The results for $\theta=45$ degrecs are depicted in Figs. 5-7. Agrement with theory is not as gond as in the previous cases, especially at high frequencies and near the edge. It shoutd be kept in mind that the results computed from theory for high frequencies are in themselves approximate as pointed out in Appendix 13,
This theory is of not much help for $\theta=1.35$ degrees except in a general way, as shown, for example, in Fig. 8 for $\phi=0$. The data for $\phi=45$ to 270 degrees are shown in Figs, 9 and 10.
It is interesting to note the comparatively large difference in the pressures at a point on the edge of the illuminated face and the opposite point across the thickness of the plate lying in the acoustic shadow by examining a corresponding pair from the preceding set of figures obtained for supple. mentary angles of incidence. It will be seen that in most cases the pressure on the illuminated edge is above and the pressure on the edge in the shatow below the free-field value, it is reasonable to assume that, had the pressire been mensured at points midway between the two points, it would have been found to be closer to the frec-fied value predicted by the theory for a disk of zero thickness.

The experimental data for oblique incidence as presented so far were used to derive an approximate picture of the pressure distribution on the surface

of the disk in the form of isobars $20 \log t p / p_{0}$ $=$ const. These are presented in Fig. 11 for $\theta=45$ and 135 degrees. In both cases, the sound wave approaches from the right,-down and into the plane of the paper for $e=45$ degress,-up and out of the plane of the paper for $0=1,35$ degrees. The values of $\left|p / p_{0}\right|$ in decibels are plotted perpendienlarly upward towards the observer in all cases.

It may be worth noting that, by reciprocity, the variation of the magnitude of the sound pressure measured at large distances in the 0 -direction due to a point source describing an arbitrary path on the surface of the disk (or square) is given by the isobars crossed by that path.

Square

Data for a rigid square plate with sides of lengels $2 a$ were obtained in a manner similar to the one described above for the disk. Mleasurements were made for perpendicular incidence only.

Figures 12 and 13 show the results of the measurements for $\theta=0$ and $\theta=180$ degrees, respectively. Comparison with the approximate theory shows reasonally good agreement. The theory yiedds again high values on the illuminated side ($\theta=0$) and low
values on the shadow side $\left(0=180^{\circ}\right)$, at low frequencies. Again this is true for all frequencies at the edge. Essentially the same considerations as discussed in connection with the disk apply to the experimental values at the edge. At the corners the measured values are very nearly equal to the free-field pressure in all cases.
The corresponding approximate isobars are shown. in Fig. 14.

ACKNOWLEDGMENT

The author wishes to express his thanks to Dr . A. Leitner of New York University for making available his computations of splieroidal wave functions prior to publication. Thanks are also due Dr. S. P. Norgan, Jr., for his assistance with the exact theory, and Miss C. L. Froelich and her staff for their painstaking numerical evaluation of the integrals of the approximate theory.

appendix a

Exact Solution for a Rigid Disk of Zero Thickness

 in a Plane Wave FieldThe diffraction of a plane wave of single-frequency sound by a disk of zero thickness can be
solved exactly by the use of spheroital wave functions. A number of theoretical papers and reports ${ }^{9-13}$ have appeared recently dealing with the problem in this fashion, including the complementary one of diffraction by circular apertures; hence the discussion of the problem will be limited in accordance with the scope of this paper, The notation of Stratton, Morse, et al. ${ }^{2}$ will be used throughout with only minor deviations.
The velocity potential Ψ describing the propagation of sound in an homogeneous, isotropic mediun without friction satisfies the scalar wave equation $\nabla^{2} \pm-\left(1 / c^{2}\right)\left(\partial^{2} \Psi / \partial t^{2}\right)=0$, where c is the velocity of propagation of the sound waves of small amplitudes. Assuming a sinusoidal time dependence" $\psi=\psi \exp (-i \omega l)$ where ω is the angular frequency:and t the time, ψ is a solution of the equation $\left(\nabla^{2}+k^{2}\right) \psi$ $=0$, where $k=\omega / c$. This equation is separable in the oblate spheroidal coordinate system ζ, η, φ. The surfaces $\zeta=$ const. form a set of confocal oblate spheroids generated by rotation of confocal ellipsess around their minor axes which are assumed to be in the s-direction. The focal circle of diameter $2 a$ lies then in the $x-y$ plane, and forms the botndary of the surface $\zeta=0$. The surfaces $|\eta|=$ const. are con-
focal hyperboloids of one sheet whose axis is the z axis and which are rotationally symmetrical. In particular, the surface $\eta=0$ is the whole $x-y$ plane outside the focal circle.
Thu surfaces $\varphi=$ const, are latifplanes containing the z axis and making the angle φ with the x axis, The transformation relating the Cartesian coordimates to the spherodal ones is then given by

$$
\left.\begin{array}{l}
x=a\left(1+\zeta^{2}\right)^{\prime}\left(1-\eta^{2}\right)^{1} \cos \varphi \\
y=a\left(1+\zeta^{2}\right)^{3}\left(1-\eta^{2}\right)^{4} \sin \varphi \tag{1}\\
z=a \zeta^{2} \eta
\end{array}\right\}
$$

The wave equation is sepmable in these coortinates and the solutions can be written as follows ${ }^{2}$:

$$
\begin{equation*}
\psi=S_{m 1}(-i k a, \eta) R_{m d}(-i k a, i \zeta) \exp (\pm i m \varphi) \tag{2}
\end{equation*}
$$

where m is an integer indieating the order of the "angular" and "radial" spheroidal wave functions $S_{m b}$ and $R_{m i}$. The integer l denotes the index of the characteristic values of the separation constant.
To solve the diffraction problem, assume an incident phane wave of velocity potential ψ_{0} whose direction of propagation makes an angle 0 with the

Fint, 6, Similar to Fig, 2 for $0=45^{\circ}$ iml $4=4.5^{\circ}, 225^{\circ}$.
negative s axis.

```
\psi _ { 0 } = \operatorname { e x p } [ i k ( x \operatorname { s i n } \theta - 2 \operatorname { c o s } \theta ) ]
    = exp {ika[(1+\zeta`\mp@code{)}(1-\mp@subsup{\eta}{}{2}\mp@subsup{)}{}{i}\operatorname{cos}\varphi\operatorname{sin}0
```

 \(-\zeta \eta \cos \theta] 1\).
 $$
\begin{align*}
\psi_{1}= & \sum_{m=0}^{\infty} \sum_{i=0}^{\infty} A_{m i} B_{m i} S_{m t}(1) \\
& \times-i k a,-\cos \theta) \tag{5}\\
& \times S_{m i}(1)(-i k a, \eta) R_{m t^{(s)}}(-i k(2, i \zeta) \cos m \varphi
\end{align*}
$$

3) where $R_{m}(3)$ behaves at large distances from the obstacles like an outgoing spherical wave, at i^{a} should. At the disk, assumed to be rigid, the normi particle velocity must vanish, Hence we hav $\partial /\left.\partial g^{(}\left(\psi_{a}+\psi_{1}\right)\right|_{r=0}=0$, which learls to
$B_{m, 2}=-\left[\frac{d R_{m, 1}(1)(-i k a, i \zeta)}{d \zeta}\right]_{\gamma-0}$

$$
\begin{equation*}
\times\left[\frac{d R_{m t^{\prime}}(3)(-i k a, i \zeta)}{d \zeta}\right]_{\Gamma=0}^{-1} \tag{6}
\end{equation*}
$$

where the constant $A_{m /}$ contains the normalization factor.

Similorly, the wave scattered by the disk can be expanded in terms of spheroidal wave fanctions of lle first and third kinds as

For perpendicular incidence, $\theta=0$ or π, and the fied becomes independent of φ. Hence $m=0$ and
$p /\left.p_{0}\right|_{\substack{m=0}}=\sum_{i=0}^{\infty} A_{u t} S_{0 t}^{(1)}(-i k a, \mp 1) S_{0 t^{(1)}}(-i k a, \eta)$

This is essentially the expression which is given in Spence's' ${ }^{10}$ analysis and which was used by Leitner' to compute the values shown by the full circles in Figs. 2-4.
It is of interest to examine the scattered potential ψ_{1} in more detail. Since $B_{m 1}$ vanishes for even values ${ }^{2}$ of l the summation for the scattered potential is carried out over odd values of l only. A typical term in this summation is from Eq. (5), proportional to $S_{m}{ }^{(1)}\left(-i k a_{1}, \eta\right) R_{m} t^{(3)}(-i k a, \quad i \zeta)$ $\times \cos m \varphi$. In the plane of the disk outside its boundary, i.e. for $\eta=0$, the scattered wave vanishes, since $S_{m, t} t^{(1)}\left(-i k a_{0} 0\right)=0$ for ord values ${ }^{2}$ of l. On the disk $(\zeta=0)$ the above term becomes $S_{m} i^{(1)}(-i k a, \eta)$
$\overline{\times R_{m} t^{(a)}(-i k a, 0) \operatorname{cosim} \varphi \text { which goes continuously }}$ to zero as the edge is approanched. Hence p / p_{0} is continuous as one proceeds from the center of the disk towards the edge and hecomes unity there and everywhere in the plane $\eta=0$.
The particle velocity has a singularity at the edge. It can be shown that it becomes infinite, as the edge is approached, as σ^{-3}, where σ is the distance between the fied point and the edge. Singularities of this type are encountered also in electromagnetic diffraction theory and are discussed by Bouwkimp. ${ }^{18}$

It may be pertinent to remark that the exact solution for the sound field generated by a vibrating

Fig. 7. Similar to Fig. 2 for $\theta=45^{\circ}$ and $\phi=90^{\circ}, 270^{\circ}$.
${ }^{16}$ C. J. Bouwkamp, Physica 12, 167 (1946).

Filt. 9. Similitr to Pik, 2 for $\theta=135^{\circ}$ and $\phi=45^{\circ}, 225^{\circ}$.
disk of zero thickness is of the sume form ats the seattered potential of the present problem ${ }^{0}$ for $m=0$.

APPENDIX B

Approximate Solution for Rigid Plates of Arbitrary Shape in a Plane Wave Field

It is well known that the expression for the velocity potential due to a membrane set in a rigid wall of infinite extent can be computed exactly. If the membrane is uscillating sinusoidally with a prescribed normal velocity distribution v the ve-
locity potential is given by the so-called Rayleigh formula ${ }^{14}$

$$
\begin{equation*}
\psi=(2 \pi)^{-1} \int_{F} v\left[\left(\mathrm{cxp}_{\mathrm{p}}(i k r) / r\right] d S .\right. \tag{9}
\end{equation*}
$$

The usual assumptions, as listed at the beginning of Appendix A, are presumed to hold. The integration is to be carried out over the surface F of the nembrane whose shape is arbitrary, and r is the distance between the surface element $d S$ and the point at which the velocity potential ψ is to be determinesl.

If one wishes to determine the velocity potential on F, r lies in the plane of F and is conveniently measured from the origin where ψ is to be determined (see Fig. 15).

$$
\begin{equation*}
\psi(0)=(2 \pi)^{-1} \int_{0}^{4 \pi} \int_{0}^{r_{c}} v(r) \exp (i k r) d r d \varphi_{r} \tag{10}
\end{equation*}
$$

where $v(r)$ is the normal velocity distribution on F and r_{c} is the value of r on the boundary C of F and $d S$ is conveniently expressed in polar coordinates r, φ.
Sivian and O^{\prime} Neils and later Muller et al. ${ }^{6}$ have suggested the following procelure to solve the diffraction of a sound wave by an obstacle whose plane face coincides with F, for points on f: The velocity distribution $v(r)$ on F is to he adjusted so as to be equal and opposite to the component of the particle velocity perpendicular to F of the incident wave. If we assume the incident plane wave to be

$$
\psi_{0}=\exp [-i k(x \sin 0+z \cos \theta)]
$$

the particle velocity in the z direction is

$$
\begin{equation*}
-\frac{\partial \psi_{0}}{\partial z}=i k \cos \theta \exp [-i k(x \sin \theta+z \cos \theta)] \tag{11}
\end{equation*}
$$

Hence at the surface of the obstacle
$v(r)=\left.\frac{\partial \psi_{0}}{\partial z}\right|_{z=\Omega}=-i k \cos \theta \exp (-i k r \sin \theta \cos \varphi)$
where $v(r)$ is taken to be positive in tle z direction. Inserting Eq. (12) in Eiq. (10) and identifying ψ with the scatered velocity potential $\psi_{1}(0)$ at the origin, we have
$\psi_{1}(0)=-(2 \pi)^{-i} i k \cos \theta \int_{0}^{\pi r} \int_{0}^{r_{0}}$

$$
\begin{equation*}
X \exp [i k r(1-\sin \theta \cos \varphi)] d r d \varphi . \tag{13}
\end{equation*}
$$

The ratio of the total sound pressure p to the incident pressure p_{0} at the origin becomes then

$$
\begin{align*}
& p / p_{0}=1-(2 \pi)^{-1} i k \cos \theta \int_{\pi}^{2 r} \int_{a}^{r r} \\
& \quad \times \operatorname{esp}[i k r(1-\sin \theta \cos \varphi)] d r l \varphi . \tag{14}
\end{align*}
$$

This is identical, except for slight differences in notation, with Eq. (14) of reference 6 .
Carrying out the integration over r one obtains

$$
\left.\begin{array}{rl}
p / p_{0}=1+ & \frac{\cos \theta}{|\cos \theta|}-(2 \pi)^{-1} \cos \theta \\
& \quad \times \int_{0}^{\infty=\operatorname{cxp}\left[i k r_{c}(1-\sin \theta \cos \varphi)\right]} \tag{12}\\
1-\sin \theta \cos \varphi & d \varphi \\
& \theta \neq \pi / 2
\end{array}\right\} .
$$

Fig, 10, Similar to Fig, 2 for $\theta=135^{\circ}$ and $\phi=90^{\circ}, 270^{\circ}$.

This expression was used to calculate the approximate values of $\left|p / p_{0}\right|$ for the disk and the square as shown in Figs. 2-10 and 12, 13. Along the values of ϕ (see Fig. 1) marked on the graphs computations were made at 8 equal intervils from the center to the edge. 'The evaluation of the integral was carriect out by numerical methods, for selected values of $k a$, using 20 equal steps in the interval of integration, after expressing r_{0} in terms of the variable of integration φ. In some cases, especially for high frequencies, the results may be in error as much as perhaps 2 db due to the rapid fluctuations of the integrand. In view of the considerable labor involved and the approximate nature of Eq, (15) to start with, it was not deemed advisable to repeat
the computations with a finer subativision, except for a few spot claceks.

In conclusion, there is presented a list of the more explicit expressions into which Eq. (15) was tuansformed before numerical evaluation. The position of the origin with respect to the center of the square and the disk is determined by the parameters α and β where α is the x coordinate and β the y coordinate, both expressed relative to the radius " of the disk and half the length of the side of the square, respectively, For perpendicular incidence Eq. (15) can be reduced to simple expressions for the center ($\alpha=\beta=0$) and the edge ($\alpha^{2}+\beta^{2}=1$) of the disk.

Fig, 11. Showing the approximate pressure distrilution on the sufface of the disk obtained from the experitnental data for $0 \mathrm{~m} 45^{\circ}$ and 135° in the form of boolars 20 log $/ p / p_{0}$ mconst, The wave approacles from the right and the wave front intersects the plane of the disk along the vertical diameter, The pattern is symmetrical about the horizontal dinneter.

Fig. 12, Showing the ratio of the sound pressure p to the freeGield pressure p_{0} on the surface of a rigid square plate in the ficld of a plane wave of wave number t. The maknitucle of this ratio, in decibels, is plotted along a line joining the mid-points of two oppasite sides and alont the diagonal as a function of ka for $\theta=0$. Whe calculated values obtained from the approximate theory are indicated by the thia lines.

HCAS.
CALC. \longrightarrow TWO OPROSITE SIOES; ABSCIASAE AS INOICATED
cale. -

Fig, 13. Simitar to Fig, 12 for

Dig. 14. Showing the approximate aressure distribition the the sutface of the atuare plate obtataed
 gunter of the pottern is shown. It may lee completed by symmetry considerations.

Center

Disk
$\cdots \begin{aligned} & \theta=0,\end{aligned} \quad\left|\begin{array}{l}p / p_{0} \\ 0=180^{\circ},\end{array}\right|=\left[(2-\cos k a)^{2}+\sin ^{2} k a\right]$
Edge
$\left.0=0, \quad\left|p / p_{0}\right|=1 / 2\left(\left[3-J_{0}(2 k a)\right]^{2}+S_{0}^{2}(2 k a)\right)\right\rangle$
$0=180^{\circ},\left|p / p_{0}\right|=1 / 2\left(\left[1+J_{n}(2 k a)\right]^{2}+S_{0}^{2}(2 k a)\right)^{\prime}$
where J_{0} is the Bessel function of the first kind and S_{0} is the Struve ${ }^{\text {th }}$ function, both of order \%ero.

General Case

$$
\left|p / p_{0}\right|=\left|1+\frac{\cos \theta}{|\cos \theta|}-(2 \pi)^{-1} \cos \theta I\right|,
$$

where

Fig, 15. Geometry pertaining to the approximate theory.

$$
I \equiv \int_{0}^{2 x} \frac{\operatorname{cxp}\left(i k a\left[\alpha \cos \varphi+\beta \sin \varphi+\left(1-\alpha^{2} \sin ^{2} \varphi-\beta^{2} \cos ^{2} \varphi+\alpha \beta \sin 2 \varphi\right)\right][1-\sin \cos \varphi]\right)}{1-\sin \theta \cos \varphi} d \varphi
$$

where $\alpha^{2}+\beta^{2} \leq 1$.

Square

$\begin{array}{ll}\theta=0, & \left|p / p_{0}\right|=\left|2-(2 \pi)^{-1} /\right| \\ \theta=180^{a}, & \left|p / p_{0}\right|=(2 \pi)^{-1}|I|,\end{array}$
where

$$
\begin{aligned}
& +\int_{\tan -\frac{1}{1+\frac{1}{1+4}-\frac{\pi}{2}}}^{\frac{\pi}{2}-\tan -\frac{1+\theta}{1-3}} \exp [i k a(1+\beta) \sec \varphi] d \theta \\
& +\int_{-\tan -\frac{1-\mu}{1-\alpha}}^{-\tan \frac{1-\beta}{1-\beta}} \exp [i k a(1-\alpha) \sec \varphi] d \varphi \\
& +\int_{\tan -\frac{1-\theta}{1-\frac{1}{1}-\frac{\pi}{2}}}^{\frac{\pi}{2}-\tan -\frac{1-\beta}{1-\pi}} \exp [i k a(1-\beta) \sec \varphi] d \varphi .
\end{aligned}
$$

Theory of Ultrasonic Intensity Gain Due to Concave Reflectors*

Virginia Guffing and Frincis F. Fox
Catholic Unirersity of America. Wrashimgton, D. C.
(12eceived Februiary 17, 1949)
A conctve reflector can be used to concentrate a beam of plane taterasonic waves in the focal region where the intensity I_{f} is much larger than the intensity I_{i} in the plane wave. When the sound wave. length is smill compared to the dimensions of the lean and reflector, one can use the welloknown Fraunhofer diffraction formulas to calculate the intensity gain, i.e., $I_{/} / l_{i}$. Expregsions are derived for the maximum and avenge intensity gain in the zero-order inntge when the altrasonic bean is circular or rectangular, iogether with formulas givitg the cotal intersity filling upon circular or rectangular areas of arbitritry dimensions in the freal region.

INTRODUCTION

IN this paper the well-known optical equations for Framhofer diffraction are applied to a sjstem in which a beam of plane ultrasonic waves is concentrated into a small region with a concave rellector.
The conditions necessary for the use of Fraunhofer diffraction formulas may be stated as follows. A train of plane waves strikes an infinite screen in which there is a square or circular aperture provided with a thin lens of focal length f. One then can express the intensity distribution on a screen at a distance f from the aperture, and in a plane paralle! to that containiug the aperture, by the usual Fraunhofer formulas. The case in which a plane wave is normally incident upon a square or circtilar mirror of focal length f is strictly analogous, with the exception that the contribution of the incident wave before it strikes the mirror is neglected. One can think of the diffraction pattern superimposed on a background provided by the incoming plane wave. Again, if one makes the assumption that what atrikes the mirror or lens is a "beam of plane waves" of circular or rectangular cross section, nothing is changed, except that now the dimensions of the beam replace those of the aperture in the first screen.

A sound beam radiating into a liguid from a plane piston in an infinite baffe hiss its ourn diffraction structure. Near the source one has only a fraction of the total energy fulfiling the plane wave assumption; this fraction gets larger as the wavelength gets smaller compared to the dimensions of the radiator. When the source is very large compared to the wave-length, and the reflector or fens is close to the source, the assumption of a well defined beam of plane waves is not only the simplest to handle mathematically, but it is also the one that most accurately describes the waves falling on the mirror. Thus, we assume that a heam of plane waves of wave-length λ_{1} traveling along the principal axis z of a mirror or lens S, converges to

[^10]the seometrical focus 0 at the origin of the coordimate system $x_{1}, y_{1} z_{1}$ as shown in Fig. 1 .

i. circular symmetry

Maximum Intensity Gain

We first take the catse where the incoming beam has a circular cross section of radius R. In this case the Fraunhofer diffraction pattern in the $x y$ plane has circular symmetry around the ε axis. At a point P in the $x y$ plane, the intensity is given byth

$$
\begin{equation*}
I=B \pi^{2} R^{1}\left[2 J_{1}(z) / s\right]_{1}^{2} \tag{1}
\end{equation*}
$$

in which $J_{1}(z)$ is the Bessel function of the first order of argument z, and $z=2 \pi R r / f \lambda$, in which r is the distance from the s axis and f is the focal length of the relfector or mirror. B is a normalizing constant which is to be actjusted so that the total intensity falling on the $x y$ plane is equal to the total intensity in the incoming beam. Maximum and minimum values of I are given by

$$
\begin{equation*}
d / d s\left[J_{1}(z) / z\right]=0=J_{2}(z), \tag{2}
\end{equation*}
$$

where $r_{s}(s)$ is the Bessel function of the second order. In particular, the zero-order maximum of intensity I_{m} occurs at $\varepsilon=0$, where $z^{-1} J_{1}(\theta)=\frac{1}{2}$ and

$$
\begin{equation*}
I_{m}=B \pi^{2} R^{4} \tag{3}
\end{equation*}
$$

The total flus falling on a circle of racius r in the .y plane is

$$
\begin{equation*}
F=\int_{0}^{r} I 2 \pi r d r=B \pi R^{t f} f^{2} \lambda^{2}\left[1-J_{0}^{2}(z)-J_{1}^{2}(\varepsilon)\right] . \tag{4}
\end{equation*}
$$

In particular, when $r=\infty$, the cotal flux is that in the incoming beam

$$
\begin{equation*}
F_{\infty}=B \pi R=f \lambda^{\prime} \lambda_{1} \tag{5}
\end{equation*}
$$

since $J_{10}\left(\propto_{0}\right)=0=I_{1}(\infty)$. But

$$
\begin{equation*}
F_{\infty}=\pi R^{2} I_{i} \tag{6}
\end{equation*}
$$

${ }^{1}$ A. Gray and G. B. Mathews, Trealise on luessel Functions (MacMilian Company, Lud. Jondon, 189.5).
i M. 130 orn, Opil (Verlag. Julius Springer, Berlin, 1933),
p. $157 \sim 160$,
where I_{s} is the intensity of the incoming plane wave, so

$$
\begin{equation*}
B=I_{i} /(f \lambda)^{3} . \tag{7}
\end{equation*}
$$

If one defines gain in intensity at any point P ass

$$
\begin{equation*}
g=I_{n} / J_{i} \tag{8}
\end{equation*}
$$

where I_{P} is the intensity at the point P, wen the maximum intensity gain gm is

$$
\begin{equation*}
g_{m}=\left(\pi R^{2} / \Omega\right)^{2} . \tag{9}
\end{equation*}
$$

Average Intensity Gains

To obtain the average gain 0 for the intensity over an aren in the focal region, one obtains from (4) and (7) the total flux passing through the circle in the $x y$ plane of radius r as a multiple of I_{i}, and divicles by πr^{2} to obtain the average intensity, Thus,

$$
\begin{equation*}
\theta=\left[1-J_{0} 0^{3}(z)-J_{1}(z)\right](R / r)^{2} . \tag{10}
\end{equation*}
$$

The first minimum of (1) occurs at: $s=3,8317$ or $r=0.610 \lambda / R$, where $I_{r}=0, J_{4}=0$, and $J_{2}=0.4028$, so that the average intensity gain in the aern-order diffraction imate is

$$
\begin{gathered}
f=0.8378(R / r)^{2}=0.3116\left(R^{2} / f(\lambda)^{2} .\right. \\
\text { IV. RECTANGULAR SYMMETRY } \\
\text { Maximum Intensity Gain }
\end{gathered}
$$

When the beam of plane waves incident along the principal axis of the reflector has a rectangular cross section $\Delta x=a, \Delta y=b$, and the z axis is in the geometrical center of the beam, the intensity at a point $P_{(x y)}$ in the $:=0$ plane is ${ }^{2,3}$

$$
\begin{equation*}
J_{x y}=B a^{2} b^{2}[(\sin p x) / p x]^{3}[(\sin q y) / q y]^{2}, \tag{12}
\end{equation*}
$$

where $p=\pi a / f \lambda ; q=\pi b / \int \lambda$. The first, and largest, maximum is at $x=y=0$, where

$$
\begin{equation*}
I_{m}=B a^{2} b^{2} \tag{1,3}
\end{equation*}
$$

The intensity is zero wherever $p x$ or $q y$ is an integral nultiple of π, and, in particular, the zeroorder image is bounded by the lines of zero intensity

$$
\begin{equation*}
\pm x=\lambda / a ; \quad \pm y=\rho \lambda / b . \tag{14}
\end{equation*}
$$

The parameters $\Omega \lambda / a$ and Ω / b are convenient natural scale units in which to express x and $\%$.
For the total intensity falling on a rectangular area $\Delta x \Delta y$, bounded by the lines $x_{11} x_{n}, y_{1}, y_{n}$, we have
$F=B a^{y^{3}} b^{3} \int_{x_{1}}^{x_{1}} \int_{v_{1}}^{v_{1}}\left[(\sin \beta(x) / p, x]^{2}\right.$
$\times[(\sin q y) / q y]^{3} d y d x$.
Using $2 \sin ^{2} 0=1-\cos 2 \theta$, writing $(2 \pi a x / f \lambda)=k$, TR.W.Wood Physical Optics (The Macmillan Contpany, New York, 1923).

Fic. 1. Coordinate systens Sor concave reflector or lens. Origin is at the geonetrical focal point, with the a axia comeiOrigin is it the geonaetrical focal pothe, with the a axia come. The
dent with the principal axis of the reflector or lens, The dent thith the principal ants of the reflector or lens, the of the incident bean of plane waves.
$(2 \pi b y / f A)=m$, and integrating this becomes

$$
\begin{align*}
F=\frac{B a l d f^{f} \lambda}{\pi^{3}} & {\left[\int_{k_{1}}^{k_{2}} \frac{\sin k d k}{k}-\left(\frac{1-\cos k}{k}\right)_{k_{1}}^{k_{2}}\right] } \\
& \times\left[\int_{m 1}^{m_{1}} \frac{\sin m m m}{m}-\left(\frac{1-\cos m}{m}\right)_{m_{1}}^{m_{2}}\right] \tag{16}
\end{align*}
$$

where k is the value of k for $x=x$, ete. Since tables of the sine integral

$$
S i \theta=\int_{0}^{\theta} \frac{\sin \theta}{\theta} d \theta
$$

give the value of the integral from zero to 0_{1} for the argument, it is useful to write

$$
\begin{align*}
& F= \frac{B a b f^{2} \lambda^{7}}{\pi^{2}}\left[S i\left(k_{1}\right)-\right. \\
&+\frac{\left(1-\cos k_{7}\right)}{k_{2}} \\
& k_{1}\left.\sin \left(k_{1}\right)\right]\left[\operatorname{Si}\left(m_{2}\right)-\frac{\left(1-\cos m_{9}\right)}{m_{2}}\right. \tag{17}\\
&\left.+\frac{\left(1-\cos m_{1}\right)}{m_{1}}-\operatorname{Si}\left(m_{1}\right)\right] .
\end{align*}
$$

We can use (17) at once to determine B in terms of f_{i}. Since $\operatorname{Si}(\pm \infty)= \pm \pi / 2$, we find for the totai intensity

$$
\begin{equation*}
F_{t}=B a b f_{j}^{2} \lambda^{2}=I_{i} a b_{1} \tag{18}
\end{equation*}
$$

or

$$
B=I_{i} / f^{\prime} \cdot \lambda^{3},
$$

For the maximum intensity and gnin at the center of the ero-order image, we have from (13) and (18)

$$
\begin{equation*}
J_{m}=J_{i}(a b / \rho \lambda)^{2} \quad \text { and } \quad g_{m}=(a b / \lambda)^{2} . \tag{19}
\end{equation*}
$$

Tamse I. Values of $K=[\operatorname{Si}(k)-(1-\cos k) / k] / \pi$ for definite values of $k\left(-2 \pi \cdot x^{\prime}\right)$,

*	K
0.1	0.01588
0.2	0.03181
0,3	0,0.4763
0.4	0,06339
0.6	0,09454
0.8	0.12509
1.0	0.15483
1.2	0.1836
1.4	0.2111
1.6	0.237 .4
1.8	0.2623
2.0	0.2856
2.5	0,3368
3.6	0.3773
*	0.3868
3.5	0.407.4
4,0	0.4281
4.5	0. 4.409
5.0	0.4477
6.0	0.4514
2π	0.451 .4
7.0	0.4518
8.0	0.455 .5
9.0	0.1624
37	0.4656
10.0	0.4603
11.0	0.4736
12.0	-0.4749
$4 \times$	0.4750
13.0	0.4750
14.0	0.4757
15.0	0.4778
5π 16.0	0.4796 0.4803
20,0	0,48.3.
30.0	0.4898
$40.0{ }^{\circ}$	0.4019
50.0	0.4937

Average Intensity Gain

The general expression (17) is greatly simplified under particular conditions. When $x_{1}=-x_{3}$ and $y_{1}=-y_{2}$, which is usually the ease of greatest experimental interest,

$$
\begin{align*}
& F=\frac{4 I_{1} a b}{\pi^{2}}\left[S i\left(k_{n}\right)-\frac{\left(1-\cos k_{2}\right)}{k_{2}}\right] \\
& \times\left[S i\left(m_{2}\right)-\frac{\left(1-\cos m_{2}\right)}{m_{2}}\right] \tag{20}
\end{align*}
$$

Since

$$
\lim _{\theta \rightarrow \infty}\{\operatorname{Si\theta }-[(1-\cos \theta) / \theta]\}=\pi / 2
$$

it is useful to write (18) in the form

$$
\begin{equation*}
F=I_{1} a b\left[4 K\left(k_{n}\right) M\left(m_{n}\right)\right] \tag{21}
\end{equation*}
$$

where

$$
K=\frac{1}{\pi}\left[\operatorname{Si}(k)-\frac{(1-\cos k)}{k}\right]
$$

and

$$
\begin{equation*}
M=\frac{1}{\pi}\left[S i(m)-\frac{(1-\cos m)}{m}\right] . \tag{22}
\end{equation*}
$$

K and M are even functions of the argument. Then we have for the average intensity and gain in the region bounded by $\pm x, \pm y$,

$$
\bar{I}=(a b K M / x y) I_{i} \quad \text { and } \quad \eta=a b K M / / x y
$$

In the natural units defined by

$$
\begin{align*}
& x^{\prime}=(a / f \lambda) x ; \quad y^{\prime}=(b / f \lambda) y^{\prime} ; \\
& I=(a b / f \lambda)^{2}\left(K M / x^{\prime} y^{\prime}\right) I_{i} ; \tag{24}\\
& g=(a b / f)^{2}\left(K M / x^{\prime} y^{\prime}\right) .
\end{align*}
$$

The form of (23) indicates the plysical nature of $K M$ most elenriy: of the total energy incident: in the beam $a b$, the fraction $K M F$ falls on the surface bounded by $x=0, x=x_{1}, y=0, y=y_{1}$. The form (24) is useful for routine determinations of intensity gains, or of the functions K and M. Values of K as a function of x^{\prime} (or M as a function of y^{\prime}) are given in Thable I, and plotted in Fig. 2. Onc expresses x (or y) as x^{\prime} (or y^{\prime}), and finds K and M from the table or curve. 'lhese, together with a, b, f, and λ, determine the gain immediately. In particular, for the zero-order image, using (14) and (24),

$$
\begin{equation*}
0=0.8151(a b / 4 . x y)=0.2038(a b / f \lambda)^{2} \tag{25}
\end{equation*}
$$

III. SCREENING: IONG STRIPS AND STRAIGHT EDGE

It is useful to know the flux falling on a rectangular strip bounded by the lines $x= \pm \infty, y=y_{1}$ and $y=y_{2}$. Since $x= \pm \infty, K=\frac{1}{2}$

$$
\begin{equation*}
F=I_{i} a b\left(M I_{2}-M I_{1}\right)_{1} \tag{26}
\end{equation*}
$$

where M_{1} and M_{2} are the values of M for the argument corresponding to y_{1} and y_{2}. When $y_{1}=-y_{2}^{\prime}$,

$$
\begin{equation*}
F=2 I_{i} a b \mathrm{M}_{1} \tag{27}
\end{equation*}
$$

These expressions enable one to calculate at once the fraction of the total energy in the beam that

Fig. 2. The function $K=[\operatorname{Si}(k)-(1-\cos k) / k] / \pi$ plotied as a fuaction of the parameters $k\left(-2 \pi x^{\prime}\right)$ nad $x^{\prime}(=x a / f A)$, where the lengths x, an, f, and λ are measured in the same units. The curve is the sime if one substitutes if, m, y^{\prime}, y, and b for K, k, x^{\prime}, x and a.
strikes a given obstacle (long strip or cylinder) placed in the $\mathrm{z}=0$ plane.
When $y_{2}=+\infty$, and y_{1} is the position of the lower edge of a straight edge screen, the total fux that strikes the screen is

$$
\begin{equation*}
F=2 I_{i} a b\left(\frac{1}{1}-M M_{1}\right) . \tag{28}
\end{equation*}
$$

IV. FLUX FALLING ON CIKCULAR AREA DUE TO A

 RECTANGULAR BEAMAlthough the expressions developed in I and II are not convenient for calculating the average intensity or intensity gain on a circular area in the $z=0$ plane, they can be used to get an approximate value when the center of the circular area is at the origin. For most experimental data, the following method is more accurate than the data. One writes

$$
\begin{equation*}
\theta=\left(a b / \pi r^{2}\right)\left[4 K^{\prime}(k) M \Gamma(m)\right], \tag{29}
\end{equation*}
$$

where r is the radius of the circle in the $z=0$ plane. The arguments of the functions K and M are then obtained by setting $x=y=\frac{1}{2}\left(\pi r^{2}\right)^{\frac{1}{2}}$, and clanging to the scaled varinbles $x^{\prime}=(a / \rho \lambda) x$ and $y^{\prime}=(b / f \lambda) y$. K and M are then cletermined for $k=2 \pi x^{\prime}$ and $m=2 \pi y^{\prime}$. Although the metlood yields values that are surprisingly accurate, it is not ensy to estimate the actual error involved.
A more laborions method, but one which gives upper and lower limits to the calculated values, can be used to obtain a desired accuracy. The first quadrant of the circle is divided into i strips, each strip being Δy high and having minimum, maximum, and average lengths $\left(x_{i}\right),\left(x_{i}\right)$, (x_{i}) as shown in Fig. 3. The total flux falling on the i th trapezoid is approximately

$$
\begin{equation*}
F_{i}=I_{i} a b\left[M\left(m_{i}\right)-M\left(n_{i}\right)\right]\left(\frac{\lambda}{j}\right)\left[K\left(\underline{k}_{i}\right)+K\left(k_{i}\right)\right], \tag{30}
\end{equation*}
$$

where the $M\left(n_{i}\right)$ and $1\left(m_{i}\right)$ are the values corresponding to the lower and upper limits of Δy_{3}, and the $K\left(\underline{k}_{i}\right)$ and $K\left(K_{i}\right)$ correspond to the i th trapezoicl dimensions ${\underset{x}{i}}$ and \mathbb{E}_{i}. The average intensity gain is

$$
\begin{equation*}
J=4 a b \sum^{i} F_{i} / \pi r^{2} . \tag{31}
\end{equation*}
$$

Obviously by taking $\Delta y_{\text {i }}$ small enough, any desired accuracy can be obtained, although it will

Fig. 3. Notation for division of circular quatramt into rectangular sirips or trapezoids.
seldom be necessary to take more than $i=5$ or 10 . An upper limit for 0 can be obtained, using not the arithmetical mean of the K 's for the upper and lower valuc of x, i.e,, $\frac{1}{2}\left[K\left(k_{i}\right)+K\left(k_{i}\right)\right]$, but only $K^{\prime}(\vec{l})$:

$$
\begin{equation*}
g=\left(4 a b / \pi r^{2}\right) \sum^{i}\left[M\left(m_{i}\right)-M\left(m_{i}\right)\right] K\left(k_{i}\right) . \tag{32}
\end{equation*}
$$

A lower limit is obtained by using $K(k)$:

$$
\begin{equation*}
\theta=\left(4 a b / \pi r^{2}\right) \Sigma^{\prime}\left[M\left(m_{i}\right)-M\left(\underline{m}_{i}\right)\right]\left[K\left(\underline{k}_{i}\right)\right] . \tag{33}
\end{equation*}
$$

From (32) and (33) one can obtain the maximum possible error in the intensity gain as calculated from either (29) or (31). For example, the average gain for a circular area ($r=0.781 \mathrm{~mm}$), when $f=34 \mathrm{~mm}$ and $\lambda=0.353 \mathrm{~mm}$, was calculated from Eq. (29) to be 74. Equations (30), (31), and (33) were used then with the quadrant divided into 10 strips having values of \bar{y}_{i} equal to $0.10,0.20,0.30$, $0.40,0.50,0.60,0.650,0.70,0.750,0.781$. From Eq. (30), 0 is 74.14; from Eq. (32), the upper limit 0 is 75.03 ; and from Eq. (33), the lower limit is 74.02,

The authors wish to thank Prolessor K. F. Herzeld for many helpful discussions and Mr. Stephen Malaker for assistance with the numerical calculations.

Experimental Investigation of Ultrasonic Intensity Gain in Water Due to Concave Reflectors*

Francis E Fox and Virginia Gmeming Cathalic University of America, Washington, D. C.
(Received Febmary 17, 19.19)

This paper discusses a method of producing high intensity sound wives in lifutish. A beam of ultrasonic waves ($4,25 \mathrm{me}, 15 \times 12$ man cross section, acoustic powerno 2 watta) was focibeal with an ordinary watch glass (6.8 cm radius of curvature). The intensity in the focil region is large enongh to raise an ultasonic fonmain 10 cm high accompanied by a spray of ferg troplets, The disuribution of intensity in the focal region was determined by measiring the sercening effect of properly placed obstacles. The sombd jutensity in the focal region and in the plane whe was measured by the ratiation pressure on beads of convenient size. The absolute intensity in the plane wave was also calcalated from the driving potential tund de measured neechanical O of the crysalt, and reasomable agreement was found with the direct measurement. A gata in intensity by a fiactor of albout 70 was meastrad where simple diffraction theory predicts 74, For the lighest voltages used the extrapohated negative peak pressure was it atmospheres, No civitation was observed.

INTRODUCTION

THE need of an ultrasonic beam of known high intensity in liquids in many fields of researeh has stinulated investigation in the methods of producing such beams and measuring their intensity. In this paper we wish to present the results obtained by focusing high frequency sound waves in liquids with concave reflectors. Measurements of the acoustic energy density in the sound fied by several methods are also discussed.
In much research concerned with the effect of high intensity sounds in liquids the total acoustic power supplied by the source is of secomlary importance: the effects depend on the acoustic energy density at the point or region in which the phenomena are olserved. Several methods are available for producing such regions of high energy density.
A simple approach to the problem would be to use a quartz erystal with a driving voltage which produces a resonant displacement amplitade just a little below the breaking strength. Difficulties arise because of the high voltages that are necessary to produce the theoretically maximum displatements. These might be avoided by using sources with ia large mechanical sharpness of resonance (high Q). This could be done if the liquid into which the crystal radiates is itself a resonamt column tuned to the same frequency as the sound source. The over-all mechanical Q of such a system can be made much highery than that of a guarte crystal radiating into a semi-infinite !iquid medium. For the latter a Q of 10 is typical while a Q of 5000 is not unusual for the double resonator combination. However, long before the elastic limit of the erystal is reached the solid surface pulls away from the
*This rescarch was aided by the ONR Contract N6 onr-2.55. 1F. E. Fox and George D. Kock, I'ros, Inst, Radion Eng. 39 , $20-33$ (10.42).
liguid in the contraction part of the cycle, In that case the efficiency of the quartz as a sound source falls off rapidly as the particle displacement in the licuid is now considerably smaller than the displacement amplitule of the erystal surface. Thus in practice the limiting intensities ${ }^{2}$ are determined by eavitation at the solid-liquid interface rather than by the electrical and mechanical properties of the crystal. An increase in hydrostatic pressure ${ }^{3}$ can delay the onset of cavitation until somewhat higher energy densities are achicved.
The present work was undertaken to obtain a high intensity sound beam for investigating the cavitation process within a pure liquid. Since cavitation occurs at much lower intensities at boundary surfaces than within the liquid, the sound energy must cross the boumdary surfaces at moderate intensity levels and then be concentrated by some means inside the liquid under investigation.
At Irequencies above one megacycle there are two simple ways to concentrate the energy inside the liquid. In this frequency region the sound wavelength is of the order of magnitude of a millimeter so that one can use sound sources or reflectors that have dimensions much larger than the wave-length and familiar optical formulas can be applied to predict the belavior of the ultrasonic beam. This has recently been verified ${ }^{-7}$ for the case of a focusing quarta erystal radiator; however, Labaw had concluded from his experimental work that "a slighty curved crystal gives a greater output (than a plane

[^11]one) . . . but that: this advantage is owing primarily to increased amplitude of vilration for a given impressed voltage rather than to a confinement of the encrgy output withint a smaller angle," Labaw used x cut quart\% crystals of constant thickness, and it is probable that his crystals were poor radiators. In curved crystals those sections having a normal to the radiating surface that is not along the x axis have different clastic and pie\%oelectric moduli. These sections have, therefore, both frequency and radiation characteristics that differ from those of true x cut sections. By grinding the conver side so that the thickness is proportional to the square root of the elastic modulus in the direction of the interior normal, ${ }^{\text {s }}$ one can arrange it so that all segments of the radintor have the same resonance frequency, but there is no way to compensate for the decreased efficiency due to the change in the piezoelectric modules.
However, a beam of plane waves can be generated in, or transmitted into, the liquid at energy densities far below the eavitation level and a concave reflector can be used to concentrate most of the energy in a very small region near the focal point of the reflector. The interference of the incident and reflected wives produces energy densities at the reflector surface that are at most four times that in the incident beam so cavitation at the reflector surface can be arvoided. In the focal region, however, the energy density may be several orders of magnitude higher than in the incident: plane wave.

In the comparable optical case it is well known that 84 percent of the light collected by the circular objective of a telescope is concentrated in the zeroorder diffraction image in the focil region. The radius of the zero-order image is given by the radius of the first diffraction minimum which falls at

$$
\begin{equation*}
r=1.22 \mathrm{f} / \mathrm{d}, \tag{1}
\end{equation*}
$$

where f is the focal length, d is the diameter of the oljective, and λ is the wave-fength of the incident light. In the ultrasonic case d will ustadly be the diameter of the incident beam of plane waves which will ordinarily be smaller than the reflector. It is useful to define die intensity gain, g, of a focusing device as

$$
\begin{equation*}
g=I_{j} / I_{i} \tag{2}
\end{equation*}
$$

where I_{J} is the intensity at a point in the focal region, and I_{i} is the intensity of the plane wave. To give a numerical example, assume that an incident beam of plane ultrasonic waves in water has a radius of $1 \mathrm{~cm}_{\text {, a }}$ frequency of 10 mc , and strikes in concave reflector of 3 cm focal length, being incident along the principal axis of the reflector. The diameter of the first diffraction ring is 0.55 mm , the ratio of the area of the incilent beam to the area of the first diffraction image is 1300 , and
since 84 percent of the total energy is concentrated in the zero order, the average intensity gain in the zero-order image is 1100 if the coeflicient of reflection is taken as 1.00 . This is not the maximum intensity gain in the focal region since the intensity distribution has a masimum in the center of the spot. The maximum intensity gain ${ }^{0}$ for a circular beam is $\left(\pi l^{2} / / \lambda\right)^{2}$, and in the case disenssed here is close to 5000 . To attempt to seeure an equivalent gain with a eurved crystal source one wonkl have to use a crystal with a radius of curvature of 3 cm and a diameter of 2 cm so that the edge segments have nomals inclined almost 20 degrees to the x axis and would be less efficient radiators than the central portions of the saurce.

Experimental mensurements yied average values of the intensity, and average intensity gains depend on the intensity distribation in the region occupied by the measuring device. For this renson, simple diffraction theory was used to calculate the total energy passing through areas of selected size and shape at the focal point of the reflector in a plane parallel to the ineident wave front when the incident beam is either circular or rectangular. The corresponding theoretical average and maximum gains in intensity are given elsewhere together with other calculations that enable one to interpret experiments in which intensity distribution is measured insteal of average intensities.

EXPERIMENTAL METHODS

In order to test the extent to which one may depend uporn simple diffraction theory to prediet the intensity gain oblainable by using curved reflectors for sound waves of high freguency, four

Fag. 1. Thee ultrasonic fountain. A streann of air is blowing the fog away from the camern. Note the "string of peats" effect. Expusitre $=0$) 1 sect. (frertueacy a 4,25 me., 1000 volts (peak) oan erystal; focal lenght of reflectormat man,

QVrgina Grifing and Francis E, Fox, J. Acoms Soc. Am. 21, 348 (1049).

Tamas I. Ultrasonic fountain data: ejection velocity and remarks concerning for formation.

Distance from water surface to foctis (mm)	Velocity of drops (cta/sect)	Remarkn eniteraing for formatoll
4	88	none
2	139	slight
1	167	heavy
0	177	

types of experiments were perforned. The first consisted of olservations made upon the "ultrasonic fountain' produced by a concentrated sound beam. These were largely qualitative but yield some idea of the gain experimentally obtainable. In the next two methods the sound waves were allowed to fall upon a radiation pressure indicator after diverging beyond the focal region; measurements were then made of the sereening effect of various obstacles placed in the focal region. Finally the energy density of the sonnd in the focal region was measured directly by the radiation pressure on a small steel bead, and in the plane wave by pressure on a larger glass bead, so that the average intensity gains for the area covered by the small bead were measured directly.

All measurements were made with an x cut crystal 1 inch square having its fundamental resonant frequency at 4.25 megacyeles. This was at one end of a small tank with the dimensions 15×8 $\times 8$ inches. One side of the crystal was in contact with the water in the tank, and the outer face of the crystal was exposed to the air. The high voltage electrode, a rectangle 15 mm long and 12 mm high,
was on the latter side and did not cover the entire erystal. It is assumed that the radiating area in the tank is the same as the area of the high voltage electrode. The end of the tank facing the crystal was covered with a $\frac{1}{2}$-inch thick. slab of $\rho 6$ rubber.*

I. The Ultrasonic Fountain

The tank was provided with a plane refector, close to the crystal and tilted so that the reflected beam strikes the water surface approximately normally. Sufficient power was used to mise a small mound of water having approximately the area of the back electrode of the quartz, and about 1 mm high. The voltage on the erysital (1000 volts peak) was then maintained constint throughout the observations. A watel glass serving as a concave spherical reflector with a focal length f of 34 mm and cliameter 36 mm (therefore, larger than the sound beam) was substituted for the plane reflector. The distance (y) between the air-water interface and the refector was varied by changing the depth of the water in the tank. When y is approximately $2 f$ the mound mised by radiation pressure is of the same general nature as that observed for the plane reflector, although somewhat elongated along the lite in the plane containing the incident and reflected beam. As y is decreased, the mound height increases and the area decreases. As y approaches f the mound rises so high that the water is cjected in what first appears as a thick arched cylinder and finally as a very thin stream that rises 10 to 15 cm out of the water. At a critical level a cloud of fine fog is ejected together with the

- - Sanach apurce, x cut quarta cryata

Fic. 2, Experimental arrangement for screening meaburements,

* At these frequencies the absorption in pe rubber is very high so that all but a negligible fraction of a sound wave is absorbed in passing through the slab twice, Nehough the pe miateln with water is not as good at these frectuencies as it is in the $20-\mathrm{ke}$ frequency region, tho reflection is still sumall and is less than 5 percent at normal incidence for the frequency
used in this work,
drops that form the arched stream, Wood and Loomis ${ }^{10}$ have described similar phenomena. In their work, however, the power used was much greater than that used in the present work. They mention, for example, an applied potential of 50,000 volts at a frequency of 0.3 megacycle.
From observations upon the rate at which the fog droplets fall it was possible to estimate the droplet radius. All components of the cloud do not settle at the same rate but a fair fraction of the droplets can be observed to fall in air with limiting velocities less than 1 cm per sec. This gives a radius of less than $10^{-3} \mathrm{~cm}$ for the droplets.
A photograph of the phenomena observed near the critical value of y is reproduced in Fig. 1. The exposure time is 0.1 sec. A stream of air is blowing the fog away from the camera. The "string of beads" effect was at first thought to be due to drops ejected successively, but photograples made with different exposure times reveal that the apparently distinct drops in a chain are really photographs of the same drop in different positions. This is shown by the fact that the number of beads in each chain is proportional to the exposure time, and the length of each chain is approximately equal to the distance traveled in each exposure by a single drop. The velocity of the drop was obsained from measurements on the height and range of the stream of drops. Apparently, the drop is ejected as an ellipsoid with major axis along the stream, Surface tension then contracts the ellipsoid to a sphere (equilibrium shape), and the inertia of the mass from the ends of the ellipsoid curves it in beyond the sipherical radius to form an oblate spheroid with its symmetry axis along the strean. The drop oscillates between these two extreme shapes as it moves in the stream, and the photographs show the drop in the positions where it has the shape which reflects the maximum amount of light back into the camera. Table I gives the velocity of the drops in the stream when the water surface is near the focus.

One can use two methods to get the approximate intensity gain: (a) By using the cross section of the stream when the beam is focused at the surface, ($2 \mathrm{sq} . \mathrm{mm}$), and comparing with the cross section of the parallel beam ($180 \mathrm{sq} . \mathrm{mm}$), one gets a gain of 90 if one assumes that all the energy of the original beam has been concentrated in the area over which the fountain is raised. From theoretical considerations ${ }^{\circ}$ one finds an average intensity gain of 46 over the zero-order image. (b) The height of. the mound raised by the unfocused beam (1 mm) is compared to that of the column at the critical focusing (100 mm). By assuming that the height

[^12]| prill | | Deflectlon Withnint olstacle mat | deilection obstacle min | $\begin{aligned} & \text { Screeni } \\ & \begin{array}{c} \text { Experti- } \\ \text { mental } \end{array} \end{aligned}$ | gratio Calculated |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. 5.3 | 1.51 | 13.2 | 3.0 | 77% | |
| No. 00 | 1.01 | 22.9 | 12.3 | 69\% | 77\% |

of the water raised is proportional to the radiation pressure one again finds a gain in intensity of about 100 .
In an attempt to get absolute sound intensities, one determines first the intensity of the parallel bean when the potential applied to the quartz crystal is 1000 volts (peak): Two methods are available: radiation pressure measurements with the bead (Section (II) and calculation from the potential and the Q of the crystal (Section IV). The former gives 1.8 and the latter 2.5 watts $/ \mathrm{cm}^{2}$, or a radiation pressure of (90 to 250) ($10^{7} / 1.5 \times 10^{4}$) $=(0,6$ to 1,7$) \times 10^{1}$ dynes $/ \mathrm{cm}^{2}$, if one uses 1.5×10^{8} $\mathrm{cm} / \mathrm{sec}$, as the sound velocity in water.
The maximum velocity of the drops forming the fountain corresponds to a hydrostatic pressure of

Fic. 3. Scretuing effect of a plateasa function of the vertical position of the front bottom straight edge. The geonetrical focal print is at $y=0$ and the abscissis are given in undts $y^{\prime}=y(b / f \lambda)$ where y is vertical displacement in man, The points give the deflection of the detector in percentage of the maximbtr delfection when the plate is removed. The solid line is the theoretical curve for the percentage of the total intensity that gets past due plate as its position is varied.
1.5×10^{4} dynes $/ \mathrm{cm}^{2}$, in good agreement with the preceding calculation from the intensity gain.**

II. Intensity Distribution : Screening Methods

In order to olatain quantitative information on the distribution of intensity in the focal region of the mirror, the measurements were made of the screening efficiency of obstacles placed in the focal region. The experimental arrangement is shown in Fig. 2. The sound strikes the reflector, is focused in the neighborhood of 0 , and falls on a radiation pressure detector (B) which is large enough to intercept all but a negligible fraction of the (diverging) sound beam. The radintion pressure detector was made of a slab of ρc rubber 3 cm sfuare and about 4 mm thick on the end of a light stiff rod 25 cm long. This rod was weighted at the bottom and provided with a small cross bar 17 cm from the top which served as a fulcrum around which the rod could rotate. The deflection of the pointed top was read on a scale fixed to the supports on which the cross bar rotates. The sensitivity of the detector could be changed by varying the weights on the bottom of the rod. No attempt was made to calibrate this cletector in terms of absolute intensity since it was used only to cletermine relative intensities. For the small angles used the deflection is proportional to the sonud intensity.

In all measurements the detector was shielded from any pressure that might arise from a unidirectional mass flow of the liquid. An acoustically transparent screen of plastic material (commercially

(a) Glass lerod in platas wave: rallias me, 3 ,7f

available as "Bub-o-loon"-for making plastic toy balloons) was prepared by blowing a balloon with as thin a wall as desired. After this had set, a piece of it was mounted on a wire frame and tested for transmission. Nearly all films thus prepared causer no measurable change in the maximum deflection of the detector after the mass motion had been eliminated by one such sereen placed near the detector.
Consider a rectangular coordinate system with the origin at the principal focus of the mirror, the z axis in the direction of the principal axis of the reflector, and the y axis vertical. The obstacle was then attached to a double micrometer that permitted one to make small displacements in the x and y direction. The s position was varied by moving the stand to which the micrometer was attached. The obstacles used first were cylindrical rods (smooth shanks of steel drills). These were placed with the cylinder axis along the ad direction and near the image of the sound source. The y and z positions were varied until the deflection of the detector was a mininum. The deflection was observed for each rod and compared with the deflection obtained when the rod was removed from the field between the reflector and the detector. The results are given in Table 11 .
In order to interpret these results we calculated ${ }^{2}$ the fraction of the total intensity in the sound beam striking a strip in the $x y$ plane at $z=0$ for which x varies from $+\infty$ to $-\infty$ and y varies from $+a$ to $-a$ (a is the rallius of the rud). Since $2 \pi a / \lambda$ is

(1) Steel bead at focuat radius $=0.781 \mathrm{mmn}$, sulxpongion lengiti m. 12 nam; wetght in
water $=15.0$ me.

Fig. 4. Variation of the radiation pressere on a spherical bead as a fanatiom of the feluare of the voltage on the sound sotrese. The alscilssat unit is $(0.1 \mathrm{r}, \mathrm{m}, \mathrm{s}$, volage). The ordinates give the measured deflection (in mm) of the bead.

[^13]large we neglect the forward scattering. The experimental and calculated values are given in columns 5 and 6 of tiable 11.

- Another set of sercening measurements were made in which a rectangular slab of pa rubber $4 \mathrm{~cm} \times 3 \mathrm{~cm}$ cemented on a 1 mm brass plate of the same area was used as a screen. The deflections were observed as a function of the position of the bottom straight edge of the rubler slab. The front edge of the slab was placed directly alsove the focal region which lad been previously located by adjusting a very small drill for maximum cut-off. The bottom of the straight edge was moved from a position where all the sound reaches the detector to one in which all the sound is cut off. In Figg, 3, the points correspond to deflections measured for various positions of the straight edge. Since the power was not the same in the two sets of readings, all readings are plotted as percentage of the maximum deflection observed when the straight edge is removed. The theoretical curve ${ }^{2}$ showing the intensity getting past the straight edge as a function of the straight edge position is the solid line shown in Fig. 3.

III. Direct Intensity Measurements by Radiation Pressure

The most straightforward test of the diffraction theory is a direct measurement of the sound intensity in the focal region, This was done by measuring the radiation pressure*** on a small steel bend. To map the sound field accurately, the bend should be taken as small**** as possible. In practice, a bead with a diameter of 1.562 mm , weighing 17.0 mg in air, has excellent stability when mounted on a bifilar suspension 42 mm long made of single filaments of Nylon thread, especially if the whole suspension is under water so that surface tension effects are avoided. For these mensurements the principal axis of the reflector coincided with the sound beam. A short focus telescope, mounted on a micrometer stage which could be moved in the z direction, was used to measure the deflection. The micrometer carrying the telescope was rigidly fastened to the same framework to which the double micrometer was attached. This clouble micoumeter carried the bead suspension system. The position of the support which brought the deflected bead into the region of greatest sound intensity was found by trial and error.
For menstrement of the much smaller intensity of the plane wave, a larger glass bead was used. It had a radius of 3.76 mm , a weight in water of 335 mg ; the lengtio of the suspension was 175 mm .

[^14]Mensurements with the small buad were made between 30 and 70 volts (rimes.), an ahe large bead between 60 and 80 volts, In Figgs. ta and 4 , the deflections are plotted aghinst the sfuare of the voltage. One gets good straight lines which serves at the same time as a check on the sabudardiation of the voltmeter. The values of the dedection given by the curves at 70 volts were used for the further calculations.
The connection between the force on the bead, F, and the average density of the sound fietd \bar{E} at the place of the bead is given ${ }^{12}$ by

$$
\begin{equation*}
\bar{B}=\hat{F} / \pi r^{2} Y \tag{3}
\end{equation*}
$$

where Y is a complieated function of the densities of the bead and the medium and of the ratio of the bead radius r and the wave-length. It approximates unity for rigid spheres in plane progressive waves if $2 \pi r / \lambda$ is large. In our case this gunatity was larger than 10 which latter value would make $Y=0.95$,
Prpation (3) actually applies to plane waves. It is, however, assumed that it holds in our case also for the average value over the cross section of the bead, A correction must be considered for the convergence of the beam. In the first approximation the force should be muleiplied by the average value of the cosine between a ray and the axis. If $2 \theta_{0}$ is the opening of the cone, this gives a factor

$$
\cos \theta=\frac{1}{2}\left(1+\cos \theta_{0}\right)=3\left[1+\left(1+d^{2} / 4 f^{\prime}\right)-1\right] .
$$

If the square root can be developed, (3) should the multiplied by $1+\frac{1}{4}(d / 2 f)^{\text {? }}$. Therefore, the intensity calculated from (3) for measurements with the small bead should be used with a factor $1 / \mathrm{Y}(\cos \theta)_{\text {A }}$ $=1.07$, while measurements with the large bead in the parallel beam involve the factor unity. In this manner; one finds that for 70 volus remes, the intensity in the plane wave is 0.0184 watl/ em^{2} and the average intensity in the focal region is 1.31 watts/ cm^{2}, so that the average intensicy gain is 71. The theoretical value for the gain in intensity is 74 computed for the energy passing through a circle \dagger of radius 0.781 (that of the bead).

Accuracy of Measurements

The data in Fig, 4 allow at the most an uncertainty of 5 percent in choosing a line of best fit. This does not exclude a constant factor in the standardization of the voltmeter, or a systematic
${ }^{11}$ F. E. Fox, , Acous, Soc, Am, 12, 147-1.19 (19:0),
\dagger tiee reference 9. The theoretical calculation neplects the contribution of the incident wave, which passes through the focal region before striking the concave mirror. The measured force on the small bead is dhe difference between the ratiation pressitre clae to the plane incoming wave and that due to the Intensity in the converging betum; in addition, a small fritction of the energy in the incident buan is seatered by the bead. Corrections for these twa factors would reduce the theoretical intensity gain given here (74) by about 2.

Fig. 5. Mecdanical resonance curve of sound source.
error in the application of Eq. (3) to the convergent beam in the focal region. The agreement between calculated and measured values, however, leads us to the assumption that our errors are certainly less than 10 percent.

IV. Intensity Calculated from Applied Voltage

In the following, a method is described which permits a calculation of the plane wave intensity as generated at the crystal face from the voltage applied to the source. This can be clone if the mechanical resonance curve of the source is known. It can be shownt that $I=0.0170\left(Q f_{\mathrm{r}} \mathrm{W}\right)^{2} \mathrm{erg} / \mathrm{cm}^{2} /$ sec., where V is the r.m.s. voltage applied to an xt cut crystal racliating into water at the response frequency of the crystal, f_{r} is the frequency in megacycles, and Q is the sharpness of resonance (mechanical) of the crystal. In general Q will vary from one sound source to another and will depend upon the acoustic radiation resistance of the fluid into which the crystal is sadiating, the type of mounting of the crystal, etc, and should be determined for the sound source as actually used. This can be done by measuring the sound intensity for a constant V as the frequency is varied through resonance. Figure 5 shows the resonance curve of the crystal used in this work, In it the deflection of the ρc rulber radiation pressure indicator is plotted against the frequency in megacyeles. The O is given by $\Delta f / f_{r}$ where f_{r} is the frequency at which the deffection is maximum and Δf is the difiference

tt See appendix,

between the two frequencies for which the deflection is one-half the maximum. The value of $Q=9$ thus obtained can be used to compute the intersity. The calculated value of the sound intensity I_{0} at theerystal face is found to be 0.0249 watt $/ \mathrm{cm}^{7}$ when the driving voltage is 70 volts r.m.s. The intensity calculaterl from the bead deflection was 0.0184 watt/ cm^{2}.

cavitation

The ultimate purpose of the experiments described here is the development and study of eguipment for the production of high negative pressure in lifuids and to study the appearance of cavitation as a function of tension, frequency, and other viriables.

If the highest voltage available (1200 peak vols) is used, the negative peak pressure, calculated from the extrapolated curve $4 b$ and the intensity gain according to diffraction theory, $1 \dagger t$ is 41 atmospheres in the focal region. No cavitation was observed under these conditions (4.25 mc), For higher frequencies one should get is smatler focal region and even higher gains.
Systematic investigations of cavitation at high frequencies are planned.

ACKNOWLEDGMENTS

The authors wish to thank Professor K, F, Herafeld for many helpful suggestions, and Miss Laura Cheng for assistance in the preparation of the drawings.

APPENDIX

Absolute Sound Intensities in Liquids as a Function

 of Applied Voltage and Mechanical Q of SourceConsider an x cat quartz crystal with thickness x sumall compared to other dimensions, having electrodes of negligible mass on the radiatiog faces, one of which is in contact with a diruid while the otler is exposed to atir. We use the following notation:
$\rho_{0} \rho_{0}$ oxdensity of quartz and lig|uid respectively,
$c, c_{0}=$ velocity of sound in cuartz and liguidd,
$\xi=$ displacement amplitate of erststal face in contanef with liquid,
$x=$ thickness of x cut crystal (olong the x axis),
$\omega=3 \pi f_{1}$ where f is the freipuency of thu ajplited poiential $V_{\text {, }}$
V a potential amplitude (peak) applied to edectrode,
en a piezoelectric stress constant relating a geld parallel to x to the compressional stress paralled to x,
$d_{11}=$ piezoelectric strain constant
q watiffress constant of quartza ρc^{2}.
Cady's has shown that if one assumes the energy carried away by the air is negligible compared to that radiated into
$\dagger \dagger \dagger$ Intensity in the plane wave 2.7 witts $/ \mathrm{cm}^{2}$, a maximum gain in the center 213 , maximum inteasity 575 watts $/ \mathrm{cm}^{7}$. a w, G, Citdy, Report (declassiffed) No. 17. Hiezorlectric
 clansetts Institute of 'rechnology, September 30, 1945), prepared under OSRD Coneract OEMAs 262, suld-t:onttract DIC 178188 with Radiation Laboratory', Al.L.'T.
the liquid
$\xi^{2}=\left(\mu_{1} \% / \omega x^{2} \rho c\right)^{2}(1-\cos \beta)^{2} /\left(1-\left(1-m^{2}\right) \cos ^{2} \beta\right), \quad(\lambda, 1\rangle$
where $m=\rho x_{0} / \rho c$ and $\beta=2 \pi x / \lambda=\omega x / c$. In what follows wo consider the frequency to be varying in a mall range about the resonant frequency wa of the h (orde) harmonic of the crystal, Following Cady ane writes
$\omega r / c=\left(\omega_{\Lambda}+\Delta \omega\right) x / c=h \pi+h \pi\left(\Delta \omega / \omega_{A}\right)=h r+r$,
where
$r m h r \Delta \omega / \omega$, and $h=1,3,5 \cdots, \quad(A .3)$
We write coss $\boldsymbol{=}=-\mathrm{cos} r$, expand cosr, retain ouly the terms in r^{3} since r is small near resonance, and find

$$
\begin{equation*}
\xi^{\prime} \simeq\left(\epsilon_{11} V / 2 \omega_{2} \rho c x\right)^{4}\left(\left(4-r^{1}\right)^{2} / m^{2}+r^{2}\right) \tag{A.+}
\end{equation*}
$$

while at resonatnce
$E_{m}{ }^{2} \simeq\left(2 e_{1} V / \omega_{n} \rho c_{1} m\right)^{2}$
One finds the value of r for which $\xi^{3}=\xi^{2} \xi^{3}$, after neglecting $r \cdot$ terms
$(h r \Delta \omega / \omega)^{1} m^{2} r^{2}=m^{2} /\left(1-m^{2}\right)$.
Let $\omega_{1} / 2 \Delta \omega=Q_{h}$ the mechanical sharpness of resonance obtained by measuring the difference between the two value of ω that nake $\xi^{y}-1 \xi_{n}{ }^{2}$. If energy teives the cryatal only by radintion into the liquid, as is assumed here, ($h x / Q_{k}$) is indepeudent of h so that Q_{n} is directly proportional to h.
From (A.6)
$1 / m^{4}=\left(1 / r^{2}\right)-1=\left(4 Q_{n^{2}}^{2} / h^{2} \pi^{2}\right)-1$,
and we can write the resonance amplitude in (A.5) in terms of the measured Q_{4}. Thus

According to the theory, the value of Q is independent of the area of the quartz crystal provicing the whole vibrating area ratiates sound. If part of the front surface is masked there is less radiation loss natl the measured Q shoukd be higher than the theoretical one.
On tha other hand, the meastired Q also contains the losses of the quartz dute to its moanting, which cantot be measured independently in our case and result in a lower Q.
For this reason we have not used the theoretical formula Qahx/2m but have measured it using the width of the Cmhx/2m but have measured it using the width of the $Q \rightarrow D$ is appreciably below the theoreticatly calculated value $\mathrm{C}=$?
of 16.
In most liquids Q for the fundamental resonance frequency is larger than 10 so that $\left(h^{2} n^{2} / 4 Q_{n^{2}}\right.$) is less than 0.03 . Since the intensily measurements are हeldom more accurate hima 3 percent we onnt this term in what follows.
The power radiated into the fiquitl is

$$
\begin{equation*}
I \simeq 32_{\rho} \alpha_{1}\left(\mathrm{ctu}_{1} / \rho q^{2} \pi h\right)^{2}\left(V Q_{N} / A\right){ }^{1}, \tag{A.D}
\end{equation*}
$$

where f_{A} is the frefuency of the h harmonic.
For the furtamentalt we have

$$
l=12.2\left(10^{-20}\right) \rho_{0} c_{0} Q^{2} / 2^{\prime} / \mathrm{s} \mathrm{cg} / \mathrm{cm}^{2} / \mathrm{scc}
$$

In particular, for a erystal radiating at its fundamental resonatice frefuency into water

$$
I=0.0179 Q^{3} V^{3} / \mathrm{trg} / \mathrm{cm}^{2} / \mathrm{scc}, \quad \text { (A.11) }
$$

where f is in megacyeles, V is the applied penk voltage, and Q is the measured starpness of resonance for the fundamental.

 (11) may pe increaned liy na mach as is percent.

Focusing Uitrasonic Radiators

G. W. Whimard

Pezoclectric altrasonic radiators made in the form of a thin spherical shell radiate spherical sound waves which come to a focus at the center of curvature of the shelf, elmas enablimg the production of waves which cone to a focus at the center of curvature of the shell, elas enabling the production of
muth greater ulemsonic intensity in a small focality removed from the radiator than it is ponsible to ohtain directly it the sterfice of a radiator. It is here shown by tatrasonic light diffiaction pieturus of the radiated satned field that the sharponess of focms is limited by wave diftaction in the manture well known in astronomical telescopes and may be calculated by optical diffraction formalas, By the mame means the radiation efficiency of different areas of the cirved sutrface is explored and the resultes compared with theory: The variation of efficiency is, of course, due to the variation of the effective elatitic and piezoefectric constants of the diferently oriented areas. Calculations are made of the radiation efficiency of a ghartz radiator, and it is shown that a greatly jutproved focusing spherical radiator may be olataned by varying the thickness of the radiator on compensate for the varying frequency constant. Further, superior focusing cytiondrical tudiators may be obtained by special orientation or by thickness shaping or both.

I. INTRODUCTION

IIN 1935 J . Greutzmacherl proposed a form of piezoelectric quartz ultrasonic radiator which by its own focusing action may produce an intensity of ultrasonic energy at its focus that is much greater than that at the radiator surface itself. Thus it is possible to obtain energy concentration without auxiliary lenses or reflectors and their concomitant energy losses. Since the region of high intensity is localized in the medium at a distance from the radiator it is casier to make use of the energy for destructive, explonatory or other purposes.
The form of the focusing radiator was that of a spherical shell, or more specifically, a concavoconvex lens of constant thickness, the two splerical surfaces having a common center of curvature. When made of piczoelectric quartz the radiator axis is preferably made to coincide with an x-crystallographic axis of the quartz. This may bs designated as an x cut cuartz focusing radiator (in tourmaline the z cut would be used). With electrode platings covering the two spherical surfaces and an applied alternating voltage of moper frequency the radiator thickness increases and decreases in phase all over the radiator, and hence radiates spherical sound waves which come to a focus at the center of curvature of the spherical surfaces. On the other hand a plane x cut quartz radiator, radintes plane sound waves which do not focus, except by the use of an auxiliary lens or curved reflector.
An element of area at the center of the foctusing x cut radiator is truly x cut and hence las the same effective clastic and piezoelectric constants (or frequency constant and electro-mechanical coupling)

[^15]as a plane x cut ratiator. However, off-center areas, \mathbf{x}^{\prime} cut, heing of increasingly different orientation as they recede from the center have, in general, increasingly different constants than the center. In fact, if the radiator diameter were equal to its radius of curvature the x^{\prime} eut peripheral areas would be 30° off from x cuf, and two such areas (diametrically opposite) would actually be true y cut surfaces, due to the trigonal symmetry of guarta. These regions would then radiate with zero amplitude due to lack of electromechanical coupling. Usually, however, radiators are made with half-angular-aperture considerably less than 30°, and reduction of coupting is not a major factor.
Actually a more serious reduction of efficiency for off-center regions is caused by the varying clastic constants and the correspondingly varying frequency constant. This applies to the usual usage wherein the energy is radiated into a mon-metallic liguid (where the intpedantee mismatel between radiator and medium is about 10 to 1). Since the frecfuency constant varies neer the surfice of the radiator and the radintor is of constamt thickness, the resonant frequencies of different regions are different. Thus when the radiator is operated at the resonant frequency of the center, onter regions of either higher or lower resonant frequency vibrate widl reduced amplitude. This reduction of efficiency' becomes serious beyond a half-mgular-aperture of 15° when operating the radiator in the fundamental mode, and beyond even lesser apertures when operating in harmonic modes (as is commonly (lone).
As previously reported at meetings of the Acoustical Society, ${ }^{=}$: the x cut quarta focusing radiator

[^16]has been critically examined for radiation characteristics and concentrating power. When operated with water on the concave side only (air on the convex side), with an input energy of 14 waths/cm² on the effective area of $6.4 \mathrm{~cm}^{2}$, the concentration of energy at the focus is such as to give inl intensity of over $5 \mathrm{kw} / \mathrm{cm}^{2}$ over a circular area less than one mm in diameter. Such high altrasonic intensities give interesting heating, fog, and fountain effects. However no cavitation could be produced except by auxiliary means which involved the production of standing waves or the use of a circulating reversie water current, to cancel the normally induced circulation currents. These effects of high intensity, megacycie, ultrasonic energy are being further explored and will be described at a later date.

The present paper will give a cletailed analysis of the radiation characteristics of the focusing radiator, as determined looth experimentally and theoretically, and a discussion of means of oltanining improved focusing racliators.

II. EXPERIMENTAL SET-UP

A. Optical System for Recording Radiation Patterns

By making use of the well-known light-diffraction properties of ultrasonic waves ${ }^{4}$ it is possible to obtain beautiful pictures of the radiation claracteristics of ultrasonic radiators. The optical system thereof is shown in Fig. 1. An AH-4, 100 watt mercury lamp with a pair of condenser lenses illuminates the pinhole aperture S_{5}, The 4 -inch cliameter, 11 -inch focus lenses L_{1} and $L_{2}{ }^{*}$ first colimate the light through the tank and then refocus it onto the pinhead aperture S_{3}. It is in the plane of S that the light diffraction spectra are obtained. For 5 -Me sound waves in water the angular separation of spectral order is about one-five hundredth of a radian, thus giving a suitable diameter for the S_{1} and S_{1} apertures of about 0.022 inch. Lens L_{3} focuses the center plane of the cell onto the screen or film, thus forming a pieture of the sound beam (in the present case in one-to-one size). Since the pinhend aperture $S_{\text {a }}$ stops all the undiffracted light (that not passing through a sound field) the picture background is dark, with the sound beam appearing bright. Use of a pinhole at S_{3} would have given a negative rendition. This is not recommended, since the effective area of S_{3} is then so reduced as to give insufficient picture resolution to obtain fine detail.

[^17]The same disadvantage applies also to a reversed positioning of the pinhole and pinhead apertures.
The open-top tank (10×2 inches in the horizontal plane) has cemented plate glass windows \mathbb{W} with the radiator-mount gasketed in one end. A sound absorbing pad of compressed wool or "Rho C" rubber in the opposite end prevents the reflection of sound waves. The tank may be moved, parallel to its length, through the optical systems in order to view the sommd field at different distances from the radiator, and is rotatable by a small angle about a vertical axis through C_{1} for alignment of sound wave fronts with the optical system.
The light intensities obtained were entirely suficient for direct viewing with either a transmission sereen** or a teflection screen, For taking pictures the light intensity was reduced 200 -fold by using a double set of mercury green-line glass filters, permitting simple 5- to 10 -second exposures on Kodiak SS Ortho Portrait film. This also improved the optics. The writer's pictures in "Ultra-Sound Waves Made Visible ${ }^{15}$ were also obtained with the above arrangement.

B. Focusing Radiator and Mount

The x cut quartz focusing radiator was ground in the form of a concavo-convex lens with a concave radius of curvature of 63.5 mm ($2 \frac{2}{3}$ inches), ia constant thickness of 0.572 mm (22.5 mils) to operate at 5 Mc , a convex radius of curvature equal to the sum of the concave radius and the thickness, and a diameter of 38.1 mm ($1 \frac{1}{2}$ inclies), the axis of the radiator being aligned with an \times crystallographic axis of the quartz. An axial cross section view of the radiator and mount is shown in Fig. 2, Q being the quarta radiator, and C the common center of the two splecrical surfaces (as well as the theoretical focal point). The full concave surface of the radiator was metallized with gold by evaporation, to form the inner electrole. The radiator was cemented into the cylindrical mount with electrically con-

Fto. I. The optical sybtem for oltaining radiation patterns.
** An excellent screen may be madu of thin plastic (say cellulase acelate, 15 to 25 mils thick) with a fiate samd blast surface on both sides. The increased light diffusion from shating both sides, gives hetter offaxis light intensities, © G. IV. Willard, 13eld Lah, Record, XXV 5, 104-200 (10.47),

Fig. 2. The ratiator mount, and field of view for ratiation matern figures.
ducting cement,*** thus making the inner electrode electrically continuous with the groundeci tank. The radiator mount is gasketed into the end of the tank, with spring tension rings (not shown) on the outside for compressing the gasket. Radial holes in the rim of the mount permit it to be rotaled with a spanner wrencl.
The convex surface of the radiator is unconted, the outside electrode being provided by lightly springing against this surface an appropriately shapeci aluminum block. For the production of high energy sound beams, a 28.6 mm (1t inch) diameter celectrode is used, giving a hall angular aperture of 13° for the sound feld. For exploring the nature of the radiate sound field, the electrode is restricted to a rectangular area $28.6 \mathrm{~mm} \times 5.5 \mathrm{~mm}$ (end view of Fig. 2), and is held by guides (not shown) so that its length is always vertical. In either case, of course, the sound is radiated only from the area of the radiator which is covered by electrodes on both sides, i.e., the region coverel by the external restricted electrode. Thus with the rotatable mount it is possibic to radiate sound only from this strip area of the radiator which may be parallel to the $X Y$ plane of the radiator, the $X Z$ plane, or any intermediate planes. The axis of the optical system is always normal to the length of the external electrode. The angular position of the mount, and hence of the crystallographic plane being explored, will be specified by the angle θ, which has the value zero for the $X Z$ plane, ± 90 degrees for the $Y Z$ plane, and intermetiate values for intermediate $X Z^{\prime}$ planes (see Fig. 3). The sense of 0 is such that θ is positive for a plane parallel to the crystallographic minor cap face plane ($0=+38^{\circ} 13^{\prime}$). By this specifieation the major faces of the well known $A T$ and $C T$ quartz oscillators lie in positive planes. The boundary of the picture-views, as restricted by the top and bottom of the tank windows and by the edges of Jenses L_{1} and L_{2}, is shown in Fig. 2.
A word may be added alont the width of the sound beam in the direction of the optical system.

[^18]This is 5.5 mm at the radiator, becoming less toward the focus. As the author has shown, the allowable width of plane waves for gool lighe valving, and hence pieture formation, may be as great as 36 mm for $5-\mathrm{Mc}$ waves in water. The curvature of the present spherical waves may be slown to be sufficiently small for the narrow width used that fairly quantitative rendition of sound intensities slould be obtained. When this radiator is operated at its third harmonic (with the same electrode) the valving is not as good, weaker pictures are oldained, and the intensity rendition slould be less accurate. In any case, without extensive special controls and analysis it is impossible for the sound pictures to give a truly quantitative measure of the sound intensity all over the field. However, as will be seen in the accompanying pictures the intensity distribution is quite satisfactory for verifying the features discovered theoretically.

III. OBSERVED RADIATION CHARACTERISTICS

The ease of obtaining radiation pattern pictures under varying conditions of voltage, frequency and orientation encourages the accunnulation of many more pictures than are necessary for good description of the radiator properties. Those shown here (Figs, 4 to 8) are selected to best show the special features of focusing quality and of radiation efficiency variations. Only two planes, $\theta=+38^{\circ}$ and $\theta=-22^{\circ}$ are included in the showing. These show typical effects in planes for which the effects are extreme. The over'all operation of a radiator with a full circular electrode is best determined by other means, because of the complications of optically analyzing a circular beam.
As previously noted the boundary of each view

Fic. 3. The location of the point l^{\prime}, un the surface of the mudianor is defined by angles α and $0, N, \mathcal{Y}, Z$ are crystallographic axes of the riediator.
${ }^{6}$ G. W. Willard, J. Acous. Soc, Am. 21, 101 (Mar., 19.40).
is as given in Fig. 2. The views, before reproduction, were 82 mm long in the horizontal direction and this was likewise the length of sound field covered. The center of the curved radiator was, of course, to the left of the leftedge of the view (ahout 2 mm). The height of the extermal electrodes, and hence of the beam on leaving the radiator, was 28.6 mm , and the external diameter of the mount which slows in the views was 44.5 mm .

A. Sharpness of Focus

The radiation patterns of Figs, 4 and 5 have been chosen to show the degree of acoustic focusing and to show the effects of sound-wive diffraction on the sharpmess of focus. Both figures are for the $0=-22^{\circ}$ plane, which is approximately the plane of most uniform surface radiation. For Fig. 4 the radiator was operated near its fundamental frequency of 5 Mc , while for Fig. 5 the dhird-harmonic, $15-\mathrm{Mc}$ mode was used. The lower view in each case corresponds to radiator excitation at a voltage sufficiently high to produce great enhancement of the weaker portions of the field. The radiator (which is to the left of the left edge of the figures) focuses at its center of carvature, within the accuracy of measurement. The strong core and weaker side-lobe diffraction pattern in the focal plane is similar to a cross section of the focal pattern of the astronomical telescope (strong core and successively weaker concentric rings). The sharpness of focus is thrice as sharp at 15 Mc as at 5 Mc , corresponding to increasing sharpmess with decreasing wave-length in the optical case,

The sharpness of focus of the splecrical radiator may be calculated from the optical formulas for diffraction of eonverging splerical waves passing dirough an aperture. In the present case, where the radiator has a rectangular electrode, the aperture is to be taken as rectangular of height h (and breadth b). If we consider the diffraction pattern only in the focal plane, parallel to the radiator and at a distance R thercfrom, and only the asial cross section parallel to h, then the intensity distribution as given by standard optical texts is $I / I_{0}=(\sin \alpha / \alpha)^{2}$ where $\alpha=\pi h z / \lambda R$, and s is the distance from the axis for which the intensity is I.

Of particular interest are the distances for which $I / I_{0}=0$, which are given by $\alpha=\pi, 2 \pi \ldots n \pi$, For $h=28.6 \mathrm{~mm}, R=63.5 \mathrm{~mm}, \lambda=v /$ frequency, and $y=1.5 \times 10^{0} \mathrm{~cm} / \mathrm{sec}$.,
$2 \Sigma_{n}=\frac{n(2 \lambda R)}{(h)}=1.333 n($ in mm$)$, for 5 Mc .

$$
=0.444 u \text { (in mm), for } 15 \mathrm{Mc} .
$$

Measurement, in Fig. 4, of the separation $2 z_{n}$

Fig. I. Radation in the 0 en -22° platue for the $5-\mathrm{Mc}$ mote (low intensity alowe and high intensity below). The radiator is at the left.
between the two first-order minima ($n=1$), or the second ($n=2$), etc., gives a slightly greater spacing than calculated. This is to be expected since as previously noted the radiation from the radiator surface is not strictly uniform (dropping slightly (rom center to edge), even for the $0=-22^{\circ}$ plane.

Of more practical importance are the corresponding diffraction formulas for the spherical radiator used with a circular electrode of diameter d. The optical formulas in this case give $I / I_{0}=\left[2 J_{1}(\alpha) / \alpha\right]^{2}$, where $J_{1}(\alpha)$ is the first-order Bessel function of $\alpha=\pi d z / \lambda R$. The intensity I is zero when $J_{1}(\alpha)=0$ (except when $\alpha=0$, then $I / I_{0}=1.0$), which occurs when $\alpha=3.832,7.016,10.173,13.328$, etc. Thus, if $k_{\mathrm{n}}=\alpha_{n} / \pi, d=h$, and λ, R, and h are as before, the

Fic. S. Rediation in the $0=-22^{\circ}$ plane for the $15-\mathrm{Me}$ mode (low intensity above and hish intensity below). The radiator is at the left
diameter $2 z_{n}$ of the zero intensity rings is given by

$$
\begin{aligned}
2 i_{n}=k_{n} \frac{(2 \lambda R)}{d} & =1.333 k_{n}(\text { in } \mathrm{mm}), \text { for } 5 \mathrm{Mc} \\
& =0.444 k_{n}(\text { in } \mathrm{mm}), \text { for } 15 \mathrm{Mc}, \\
k_{n} & =1.22,2.23,3.24,424 \cdots(n+0.25) .
\end{aligned}
$$

The theoretical average intensity over the area of the core may be obtained from

$$
\begin{equation*}
S_{A r}=\frac{0.84 W^{Y}}{\pi \overline{N_{1}}{ }^{2}} \tag{111.3}
\end{equation*}
$$

where W is the total radiated power（assumed equal to the electrical power ingut $\left.V^{\prime \prime} / R\right), \pi z n^{2}$ is the area of the core，and the constant $0,8+$ takes account of the fact that $8+\frac{1}{2}$ pereent of the energy passes through the core area（from optical diffraction theory）．The

Fig，6．Raliation in the $0=+38^{\circ}$ phane for four fremetencies near the 5．Ms mode．
theoretical maximum intensity，which occurs at the center of the core，is given by H．T．O＇Neil＇as

$$
\begin{equation*}
I_{0}=\frac{\pi k_{1}^{2} W}{4 I_{1}^{2}}=\frac{\left(\pi k_{1} / 2\right)^{2}}{0.84} I_{A t}=4.37 I_{A+1} \tag{III.4}
\end{equation*}
$$

i．e．，I_{0} is approxinately $t .4$ times the average in－ tensity over the whole area of the core，Formula （ 11,3 ）is very useful in checking the sharphess of focus of a radiator，$I_{\text {ar }}$ being easily measured（see following Seetion D）．From formala（III．4），then， the maximum intensity at the center of the core is calculable from I_{A} ．
For the madiator here used，operated at 5 Me， $s_{1}=0,081 \mathrm{~cm}$, and for $I V$ in watts，the theoretical $I_{A_{r}}$ and I_{c} are

$$
\begin{align*}
& J_{A_{1}}\left(\text { Watts } / \mathrm{cm}^{2}\right)=40 \mathrm{JJ} \\
& I_{4}\left(\mathrm{watts}^{2} / \mathrm{cm}^{2}\right)=175 \mathrm{~W} . \tag{111.4}
\end{align*}
$$

As shown in Section D ，the experimentally deter－ mined value of $I_{4 x}$ is within 15 percent of the above theoretical value，if account is taken of the liguide attentation from radiator to focal plane．Thus the present 5－Ale focusing radiator，with citeular elec－ trode，comes close to satisfying theoretical optical diffraction laws．
H．T．O＇Neit has made a mathematical amalysis of the diffraction of whtrasonic waves from focusing （and plane）radiators and has derived a number of formulas which are very useful in designing focasing radiators，ath has indicated under what ranges of frecuency and radiator dimensions they apply． Deviations from optical aleory becone pronounced as the radiator frequency and angular aperture are reduced，until finally there is little semblance of geonctrical focusing as known in optics，and the optical formatas are insufficient．The three most weakly focusing ratlators（the $25-8$ ，and $7 \cdot \mathrm{~cm}$ radii radiators）of Labaw ${ }^{4}$ and of Fenn appeat to come in this classification．Their most strongly focusing radiator（ $4-\mathrm{cm}$ radius）should approach optical focusing，but still should have only about one－sixteenth the concentrating power of the $5-\mathrm{Mc}$ radiator here described．

B．Uniformity of Radiator Emission

The derree of uniformity or non－aniformity of radiation from different areas of the valiator sterface is shown in Figs． 4 to 8．The two main reatoms for this not－uniformity are not－uniformity of the effer－ tive piezoclectric constant and non－miformity of the resonance frequency，over the areat of the radiator，A thitd less important effect appears to be

[^19]
due to compled modes of vibation, ats will be limally elescribed.

The first cause of non-maformity, piezoelectric, results in a gradual drop off of radiation intensity in proceding from center to erfge of the madiator, more rapidly in the $X Y$ plane than in the $X Z$ plane. For the rasliator here used the peripherad portions are only 13° off from x cat.**** so that this caluse of radiation drofmoff is small in all eases, and is not discernible in the views shown.

The effect of non-taniformity of resonalle fite quency, which is fir more sergons, is shown by Figs. 6 and 7 for the $\theta=+38^{\circ}$ plane (near the plane of greatest mon-mniformity), and at atrout 1 fon volts r.m.s. Figure 6 is for operation of the raditor at four different frequencies near to and inchadiog the fundimental frequency, 5 Mc , of the center of the radiator. It is clear that when the radiator is operated at 5 Ne the radiation is most intense from the central area of the radiator. When operated at lower frequencies the intensity is less and the dropoff from center to edge is faster. But when operated at higher frequencies there are two not-central regions of manimum intensity. Only these wegions have resonant frequencies close to the applied frequency. Regions driven offeresoname ratiate more weakly. Thus, the four views show that the lowest resoname frequency of the radiator, 5 Me, oecurs at the center and that the resonamt frequency inereases on receding from the center. In this $\theta=+38^{\circ}$ plane the greatest total maliation is olitained by operating at a frequency of 5 Mc or slightly higher.

Figure 7 shows similar conditions for operation of the radiator at its third harmonic, 15 Me. Were the localization of radiation region to the onresomance area is thrice as sharp (as will be explated fater). Thus the radiator is quite ineftective in this plane when operated in a harmonic mode.

A set of views (not shown) taken in the $0=-22^{\circ}$ plane, but otherwise with conditions of varying freguency like that in Fig. 6, would have shown essentially wniform radiation intensity over the whole area (is in lig. 4) for any frequency; the only variation being in the magnitude of this intensity, greatest for operation at 5 Mc , and decreasing for deviations therefrom either higher or lower. Thus in the $\theta=-22^{\circ}$ plane the resonant frecuency is uniform. When the madiator is operated near its third harmonic $15 \mathrm{Mc}_{\mathrm{c}}$ it this same plane, the radiation should also be uniform as just deseribed. Actually, it is fomm to be miform excent for a fine line structure, as described in the next section.

[^20]When the rathator is examined in a plane near $\theta=-51^{\circ}$ it is foumed that non-unifommity of ratiation results from a frepueney effeet opposite to that slewn in Figs. 6 and 7, Dat of lesiser flegree. That is, the resomant freducticy decreases from center to edge.

As will be slown by the calcalations to follow, the planes above examinel $\left(0=+38^{\circ},-22^{\circ},-51^{\circ}\right)$ show the extreme effects atod intermediate planes difter therefrom gradually ins the riadiator is shifted from one orientation to another. It is very interesiing to follow this shift hy eye as the radiator is being rotated (operating at oflerwise constant con(litions).

When ale ratiator is operated with a cirendar electorde the appartant nom-aniformity of emission shown above is greatly reducel, sime the optical artangement then partially integrates effects for a wiele ratuge of 0 plates. The natrow rectangular dectroule is only usal for analysis. For patifal

Fich. 7. Kirdiation in the $\theta=+3 k^{\circ}$ plate for four frerguencies near the 15-ale mote.
ase of the radiator in gemerating high intensity, localized energy the cirembar clectrode is used.

C. Extrancous Coupling Effects

Aratherminormon-aniformity of surface emission appears to be caused liy couphing phemomena wellknown in the design of high frequency erystal oseillator and filter elements. With such elements high harmonics of hen frepluency moses of vilmation whose harmonic frequencies lie in the neighlordhond of the desired bigh frepmency mole, atml which are elastically compleat thereto, elfect the atetivity of vibration and atso the athal frenteney of vibration (which would surmaily he controller onty by the thickness dimetsion). Their teleterinus effects may be reduced by varions means; damping, dimansioning, shaping. With ultrasonic rauliators which operate ia contact with a liquid or sollid methen, instead of air or in a vacum, the damping is msatly su great as to prevent observathe of couphiats effects. The writer has not experienesd this effect in plane x cat quarte radiators. However, with lower frequency ratiators where the greater thickness of the rathator (compartel wits histally not-inereased face dimensions) may dervease the gation of conss thame sion to thickness below siay 20 to 1 , compling may
hecome very promonaced. That it was onserved in this relatively thin focusing rathiator was a surprise, but may be related to its shajue or to the variable resomant frequency.
This coupling effert was fomad to be most easily observed umber the combitions used in promering Fig. 8. Were the fhomen plame of onceration was $\theta=-22^{\circ}$, where other nom-uniformitios are at a minimun. The frequeney of excitation was near the third-harmonic 15 Me, but lower than the lowest of Fig. 7 in orfer to hest show the cmpling effect. It is moter that an $1+.5$ sh Ale the eminsion is remarkathly utiform, ats is to be expected for any frepuency in his phate At a slighty higher fre-
 appeatris At 14.58 Me the secoms pronomed compleal mode pattern appears, at $1+6.6$ the third, and at 14.70 the fometh. The frespency separation of these moles is abome 0.06 . Ahe. As the frefueney is further inereased in 0.06 Me steps similar paterns appear, for each step a new pair of striations dewhophe, whtil the whole fieth is so elosely packed that the striations fill the whote fied and are now clear when operated at the ferplesey of 15 Mc . Further, through reaction on the driving circuit there is a tembery for dow driving frememer,

though uniformly increased, to jump from one pattern frequency to the next.
However, with careful control it is possible to obtain a picture at an intermediate frequency. Such a pattern is shown for the frequency 14.73 Mc which is midway between the 14.70 Mc of the previous pattern and the next step to 14.76 Mc (not shown). This more uniform pattern is typical of that which is found between all steps. This changing order of striations and jumping frefuency is characteristic of the well-known coupled-mode effect. Otherwise this coupled mode effect is not understood, It probably could be cured by dimensioning, or edge damping, or by thickness shaping. It is not apparent at 5 Mc the fundamental mode. Since its effect on radiation efliciency is so small under normal operating conditions, no attempts have been made to analyze it further.

D. Over-All Results with Circular Electrode

Though the above results are very useful in detailed analysis of the focusing radiator's behavior they do not give a elear picture of the effectivencss of the radiator when used with a full circular electrode, the normal manner of use, Also, as previously mentioned, the aloove optical method of observation is less suitable for use with circular sound beams. The following fountain, burning, and radiation pressure methods are more revealing.

For a qualitative sturly of the sharpness and location of focus one may form a fountain at the surface of the water, In the present case a steel block with 45° incline was used to refect the beam vertically up to the water-air surface. By varying the water level the water surface may be moved through the focal point. With input voltage so adjusted as to just cause piercing of the surface tension film at best focus, 70 volis in the present case, small droplets are continually popped out, and slight changes in focus return the water surface to a small hill formation. At 100 volts a fountain is formed mainly of highly directed small drops with only a very short basal column of solid water, the drops reaching a height of 20 cm , and the column cross section being essentially circular of diameter about 1 mm . For increasing voltages the fountain rises higher. Starting at the lowest fountain levels (above 70 volts input) there is produced a cold fog which becomes very copious as the input is increased. Similar but smaller cross section fountains are produced at 15 Nc . It might be added that the fountain effects ate not the result of the radiationpressure induced circulation currents in the body of the water, for a membrane introduced just below the surface of the water does not materially effect the fountain.
The electrical power dissipated in the radiator can
be figured from the known equivalent parallel resistance which is approximately 10^{4} ohms. Thus 70 volts is equivalent to one-half watt, 100 volts to one watt, etc. The actual ultrasonic powers at the focus are somewhat reduced by attenuation in the water and loss by reflection, but less than 25 percent. However, this energy is mainly concentrated into an area of the order of one scyuare millimeter thus giving the startling effects ordinarily associated with high power.
Heating and burning effects may also be used to study the focus. A highly attenmating, non-reflecting material placed at the focus will be strongly heated in a localized area in spite of the inherent, circulated water cooling (a thermocouple or thermometer records little rise of temperature because of the high acoustic reflectance and hight thermal conduction). Highly alsorbing materials such as rubber, plienol fiber, and methacrylate plastic (e.f. Lucite) will be strongly heated locally on the incident surface. In the first two materials little protuberances of melted material will appear, and on removal the material will have the claracteristic odor of overheating. The size and shape of these melted areas, if not exposed too long, is a rough measure of the sharpness of focus. The phenol fiber does not melt but cracks out. With a much less absorbing piastic (e.g., polystyrene) localized internal heating can be produced in a thick piece placed so that the focus is internal. Here a short exposure produces temporary (longer exposure, permanent) changes in the material which by their optical effects show the conical focusing of the bearn. ${ }^{10}$ Over-exposure cracks the material by internal expansion. Focusing on the surface of polystyrene produces warts as for the more attenuating materials.
It might he adided that when a person's finger is placed at the focus, an input of less than 100 volts (1 watt) produces a sensation of burning, though none of the normal burn characteristics (redness or blistering) have resulted. Since attenuation in flesh is fairly low and the reflection loss is negligible there is probably considerable danger of causing serious intermal injury without the protective warniag of discomfort.
With very simply performed radiation pressure measurements it is possible to obtain a fairly quantitative value of ultrnsonic intensity over localized areas down to one millimeter in diamcter. The side view of a radiation pressure measuring device is shown in Fig. 9. The axle of the balance rolls on two horizontal supports. Extended downward from the axle is ant arm which mounts a sound receiving pad. Extended horizontally from the axte are two arms which mount an adjustable

[^21]counter weight CW and a balancing weight $B W^{\prime}$. \%ero balance is indicated by a light-beam, mirror, and scale. In operation, the lalancing weight $B W$ is first removed and the counter weight: CW addjusted to give a zero setting with no somel beam present. Then, with the sound beam turned on, the balancing weight $B W$ is added and adjusted (together with voltage input adjustment if necessary) to reestablish the zero setting, Thus all readings are taken with the pad surface in a definite predetermined location. The radiation foree on the pad is then given by the product of the balaneing weight $B W$ and the ratio of its clistance to the aske, to the distance of the sound beam center to the axle. For the comparison of two nearly equal energy sound beams it is convenient: to leave the balancing weight fixed and vary the input voltage, the ratio of voltages squared giving the ratio of forces or powers. A diaphragm D with hole therein tmay be used to select a sumall localized region of an extended sound beam for measurement. In this manner the small focal region may be selected for measurement, and the power therein compared with that in the whole beam, obtained with the diaphragm removed.
The material of the pad and the diaphragm should be acoustically non-reflecting and sufficiently. attenuating to prevent through tramsmission. At frequencies of 5 Mc and above in water it is not: difficult to select: one of the rubbers which will be satisfactory. (Nice holes may be bored with sharp metal drills if the rubber is first frozen stiff.)
The effect on the balance of radiation pressure induced circulating currents cannot normally be greater than that due to the small energy losses creating them, that is the energy which is attennated between radiator and pad. At 5 Mc and below this loss is small in water, and may be calculated or measured. Or, the circulation may be eliminated by placing in front of the pad a thin stationarily mounted film of aconstically transparent material (polystyrene may be rolled out to less than 20 microns and introduces litule loss).

The relation between radiation forec F (in grams/ cmn) and sound energy W^{\prime} (in watts $/ \mathrm{cm}^{2}$) may be obtained from the well kuwn formulas $S=J / \mathrm{p}$, where J is the sonnd intensity in $\mathrm{ergs} / \mathrm{cm}^{7} / \mathrm{sec} ., \eta$ is the velocity of sound in $\mathrm{cm} / \mathrm{sec}$. (which is 1.5×10^{5} in water at room temperature), and S is the radiation pressure in dynes $/ \mathrm{cm}^{7}$. Since ${ }^{107 \mathrm{~J}}=\boldsymbol{I}=I$ and $S=980 \mathrm{~F}$,

$$
W(\text { watts })=1.5 \times 10^{-4} S(\text { dynes })
$$

$=14.7 \mathrm{~F}$ (grams), (111.5)
which may be taken as the integrated watts and grams over the area of beam heing measured, This of course applies to a beam which is totally abs-
sorbed and not reflected (the force would he double for a beam perfectly reflected back on itself).

The radiation force balance of Fig. 9 measures only the components of force which are normal to the axte of the balance and the arm sulpporting the pad (i.e., force components parallel to the radiator axis). This applies whether the pad is normal to this direction as shown or otherwise oriented. The error cansed by the angular distribution of the beam is nerligible in the present case for the edge rays are only 13° off-axis (08.5 percent effective). That the orientation of the pad itself is immaterial may be taken advantage of to eliminate possible pad-reflection contributions to the force, by orienting the pad at 45° to the above position and preventing the reflected beam from returning to the pad, by further reflection and attenuation.
The ratiation force balanee has been used to check the ultrasonic power radiated from the curved madiator surface, the power arriving at a plane beyond the foens, ind the power passing through a 1.63 -mm diameter hole in the diaphragm phaced in the freal plane. This was carried out at moderate input powers of ahout 10 watts giving a radiation force around 0.7 gram (much higher powers gave unsteidy balance due to flactuating circulation carrems). The radiated sotud power checked the input electrical power, and the attemantion loss down the bean checked the calculated attemation (7 pereent), both within about 5 percent. It was found that abont 75 percent of the power in the focill plate passed through a hole of diameter of 1.6 .3 mm (calculated diameter of first diffraction minimum, formula (III.2)). That this value is less than the theoretical 84 percent, given by optical diffraction formulas, is not surprising simee the sound emission from the radiator is nonuniform has violating the assumptions of the diffrietion theory.
Thus when the radiator is operated at 1000 voles (100 watts input on $6.4 \mathrm{~cm}^{2}$ area) there is about 70 watts of sound passing through the $1.63-\mathrm{mm}$ diameter core of the beam. This gives an average intensity over the core of $\int_{\mathrm{wn}}=3.4 \mathrm{kw} / \mathrm{em} \mathrm{m}^{3}$. Now assuming only that the intensily distribution over the core area in the actual experimental case is the same as that given by diffraction theory, formula (11.4) indicates that the maximum intensity at the center of the core would be $15 \mathrm{kw} / \mathrm{cm} \mathrm{m}^{4}$ (instead of $5 \mathrm{kw} / \mathrm{cm}^{2}$, as previously reported ${ }^{3}$). This high intensity corresponds to a particle acceleration amplitude of ± 45 million times the aceleration of gravity, and to a hydrostatic pressure amplitude of ± 210 times atmospheric pressure. Certainly the maximum core intensity and amplitudes could not he less than one-half of these calculated values.
Even with such intense ultrasonic agitation it
has not been found possible to produce visible cavitation in the water, except by special ausiliary means. As reported at an Acoustical Society meeting, but not discovered in time to be included in the abstract, ${ }^{3}$ visible cavitation could however be produced by two special means, each of which involved counteracting the nomally high speed water circulation through the core. In the first case, by using a reflector to return the beam upon itself, cavitation could be produced with one-fourth the above power. In the other case a reverse current stream of water from a small rubber tube, directed through the core, gave like results. Thus the lack of observable cavitation with the unobstructed sound beam may be due to the water circulating through the high intensity core region so fast that the cavitics cannot grow to observable size, or maybe not even be formed.

IV. CALCULATION OF EMISSION VS, LOCATION ($n, 0$)

When the x cut curved radiator is driven at at resonant frequency of its central area, that central area will emit or radiate most strongly while areas removed from the center will radiate more weakly. As has been mentioned this change of emission results from the changing piezoclectric and elastic properties with orientation in the crystal. The electrical and acoustical characteristics of all noncentral x^{\prime} cut locations (later defined by the angles α and θ) will be given in terms of the characteristics of the center location, i.e, in terms of the standard s cut radiator.

Of the various possible ways of treating the problem the following method appears to have advantages in that the results derived may be readily checked from either the electrical input side or the acoustic output side. This method involves finding first the resonance frequency and the equivalent parallel resistance and reactance of a standard, flat x cut radiator when driven at its resonant frequency. Then the variation of resistance with of resonant frequency shift is obtained. The product of this frequency function and the resomant resistance gives the effective parallel resistance for the actual driving frequency. The only power dissipated in the radiator is given by the quotient of the applied voltage squared and the resistance, $V^{2} / R_{\text {, }}$ and (assuming perfect conversion) this is the altrasonic power radiated.

A. Parallel Resistance and Reactance at Resomance

For a thickness, longitudinal mode piezoelectric radiator of thickness $t(\mathrm{~cm})$ and area $A\left(\mathrm{~cm}^{2}\right)$, driven at one of its resonant frequencies $N f_{r}(N=1,3,5, \cdots)$ and radiating from one-side only, the equivatent

Fra. 9. Kadiation pressure balance,
parallel resistance is

$$
\begin{align*}
& R_{r}=\frac{(\rho v)_{11^{\prime}} t^{2}}{4 e^{2} A}(\text { c.s.u. })=0.225 \times 10^{t 2} \\
& \times \frac{(\rho v)_{M} t^{2}}{c^{2} A}(\text { olms }) \tag{IV.1}
\end{align*}
$$

where ($\rho v)_{\text {an }}$ is the (density \times velocity) product of the medium into which the radiator radiates, and e is the ratio $P_{t} /(\Delta t / \ell)$ of the piezoelectric polarization in the thickness direction to the compressional strain in the same direction, when all other strains are \%ero. Similarly the parallel reactance is given by'

$$
\begin{align*}
&-X=\frac{1}{N \omega C_{0}}=\frac{2 l}{N f_{\mathrm{r}} K A}(\mathrm{e}, \mathrm{~s}, \mathrm{ut}) \\
&=\frac{1.8 \times 10^{12}!}{N f_{\mathrm{r}} K .4}(\text { ohans }) \tag{IV.2}
\end{align*}
$$

where K is the dielectric constant in the thickness direction. The resonant frequencies are given by

$$
\begin{equation*}
N f_{r}=\frac{N\left(c / \mathrm{m}_{\rho}\right)^{\frac{3}{2}}}{l}(\mathrm{c} \cdot \mathrm{p} . \mathrm{s} .), \tag{IV.3}
\end{equation*}
$$

where ρ is the density of the radiator and c is the ratio $\left.T_{r} / \Delta t / l\right)$ of the compressional stress to strain in the t direction when all other strains are zero as before, The fundamental resonant frequency is of course f_{r} while the other possible frequencies are odd harmonics thereof.

For the special case of \mathbf{x} cut quartz, under the above conditions, $e=e_{11}=5.2 \times 10^{4}$ e.s.u., f_{r}
$=\left(c_{11} / 4 \rho\right)^{\dagger}=2.86 \times 10^{5} \mathrm{~cm} / \mathrm{sec}, K=K_{11}=4.55$, ancl,

$$
R_{r}=\frac{83.3(\rho v)_{m} t^{2}}{A}(\text { ol } \mathrm{mm})
$$

$$
\begin{equation*}
=\frac{.68 \times 10^{13}(\rho \nu)_{M}}{f_{r}^{2} A}(\mathrm{olnas})_{1} \tag{IV.4}
\end{equation*}
$$

$-X_{r}=\frac{0.396 \times 10^{17} t}{N f_{\mathrm{r}} A}$ (ohms)

$$
\begin{equation*}
=\frac{0.113 \times 10^{14}}{N f_{r}^{j} A}(\mathrm{olms}) \tag{IV,5}
\end{equation*}
$$

$$
f_{\mathrm{r}}=\frac{2.86 \times 10^{5}}{t}(\mathrm{c} . \mathrm{p} . \mathrm{s} .)
$$

(IV.6)

For the further specialization, that of x cut quartz working into water, still on one-side only, $(\rho v)_{A}=1.5 \times 10^{5} \mathrm{~g} / \mathrm{cm}^{2} \mathrm{sec}$.
and

$$
R_{r}=\frac{10^{1 s}}{f_{r}^{2} A} \text { (olms) }
$$

$$
\begin{equation*}
-X_{r} \doteq \frac{0.11 \times 10^{18}}{N f_{r}^{2} A}(\mathrm{ohms}) \tag{VI.7}
\end{equation*}
$$

For a radiator working into the same $(\rho v)_{m}$ medium on two sides, at above values of R_{r} are to be cloubled, while the values of X_{r} and f_{r} remain the same.

Thus, for example, a $5-\mathrm{Nc}, \mathrm{x}$ cut quarte radiator of electrode area one square centimeter, radiating into water on one side only (negligible radiation into air on the other side) would have a parallel resistance of $R_{r}=40,000$ ohms and reactance of $X_{r}=4400$ ohrns when driven at the fundamental resonant frequency of 5 Mc . The electrical power dissipated in the radiator (and hence the radiated sound power), for an applied voltage of $V=200$ volts, r.m.s., would be $W_{r}=V^{2} / R_{r}=1$ watt, When the same radiator is operated at its third harmonic 15 Mc , the values of R_{r} and W_{r} are the same, but: X_{r} is one-thircl as much, If operated with water on both sides R_{r} is doubled, W_{r} is lialved and X_{r} is the same. The values of R_{r} and X_{r} are also of interest in arranging the coupling to the driving circuit, and can be mensured on a Q meter.

B. Off-Resonance Effect

All above values of parallel resistance R_{r} and reactance X_{r} apply when the raclator is operated at one of its resonance frequencies $N f_{r}$. When operated off-resonance different values will prevail, which, however, may be obtained by multiplying the resonance values by a suitable frequency function. Only that for the resistance is of special interest here.

The of -resonance parallel resistance R is given in terms of the resonant parallel resistance R_{r} and the frequency function Ω by

$$
\begin{equation*}
R=R_{r} \cdot \Omega \tag{IV,8}
\end{equation*}
$$

The exact value of Ω for one-side racliation is

$$
\begin{gather*}
\Omega=1+\left(4 . M^{3}-2+C^{2}\right) C^{2} \tag{1V.9}\\
M=\frac{(\rho v)_{n}}{(\rho v)_{N}}, \frac{(\text { madiator })}{(\text { medium })}, \quad C=\cot \left(\frac{\pi}{2} \cdot \frac{f}{f_{r}}\right),
\end{gather*}
$$

where f is the operating frequency, and f_{r} is the fundamental resonant frequency of the radiator as given by (IV.3) or (IV.6). The Ω-function reduces to unity for $f=N f_{r}(N=1,3,5, \cdots)$ but becomes increasingly large on receding from any resonant frequency $N f_{r}$. The Ω-function is greatly simplified under the restrictions that $M>5$ and that the operating frequency f differs from some resonant frequency $N f_{r}$ by less than 20 percent of the fundamental resonant frequency f_{r}. The first restriction is probably met for all piezoclectric materials radiating into non-metailic liquids (for quartz to water $M=10$). The later restriction covers as wide a range of off-resomance operation as is ustally of practical interest.
For one-side radiation and the restrictions deseribed above and recorled below

$$
\begin{equation*}
\Omega=1+4 M^{2} C^{2} \tag{IV.10}
\end{equation*}
$$

within one percent if,

$$
\begin{aligned}
& C^{n}=\cot ^{2}\left(\frac{\pi}{2} \frac{f}{f_{r}}\right)=\tan ^{2}\left(\pm \frac{\pi}{2} \frac{\Delta f}{f_{r}}\right) \\
& M=\frac{(\rho v)_{M}}{(\rho v)_{M}}>5, \pm \frac{\Delta f}{f_{r}}=\frac{f-N f_{r}}{f_{r}}<0.2
\end{aligned}
$$

(For two side radiation, without restrictions, $\Omega=1$ $+M C^{2}$, with λ, C, f_{1} and Δf as above.)
For x cut quartz racliating from one side only into water, $M=(\rho v)_{V} /(\rho \nu)_{10}=\left(2.65 \times 5.72 \times 10^{b}\right) /$ $\left(1.00 \times 1.50 \times 10^{5}\right)=10,4 M^{2-2}=400$ and approximately

$$
\begin{align*}
\Omega=1+400 \cot ^{2} & \left(\frac{\pi}{2} \cdot \frac{f}{f_{r}}\right) \\
& =1+400 \tan ^{2}\left(\pm \frac{\pi}{2} \cdot \frac{\Delta f}{f_{r}}\right), \tag{IV.11}\\
\Delta f & =f-N f_{r}<0.2 f_{r}
\end{align*}
$$

The solid line curve in Fig. 10 is a plot of $1 / \Omega$ vs. f / f_{r} and $\Delta f / f_{1}$. Since the power radiated at an offresomance operating frequency f is given by $W=V^{2} / R$, and at a resonance frequency $N f_{r}$ by
$W_{r}=V^{2} / R_{r}$ and since $R=R_{r} \cdot \Omega$,

$$
\begin{equation*}
\frac{\mathrm{T}^{\prime}}{W_{r}}=\frac{R_{r}}{R}=\frac{1}{\Omega} . \tag{IV.12}
\end{equation*}
$$

Thus Fig, 10 also gives the ratio of the power that would be radiated off-resonance to that on-resonance. For the example noted in the last paragraph of Scction A above, a $5 \mathrm{Mc} \times$ cut quartz radiator of area $1 \mathrm{~cm}^{9}$ radiating into water on one side only, it is seen that if the radiator is driven only $0.5-\mathrm{Mc}$ off-resonance (at $4.5,5.5,14.5,15.5$, etc.) the parallel resistance is more than eleven fold, and its power output cut to one-eleventh, of the values holding at resonance.

C. The Focusing Radiator

From the preceding section we can now determine the electrical and radiation characteristics of any given elemental area of the focusing x cut quartz radiator. The elemental area under consideration will be considered to lie at the point P. Fig. 3, on the radiator surface. Corresponding to the radiator surface being x cut at the center C_{1} it is x^{\prime} cut at any other point P. Corresponding to the previous use of c_{11} and e_{11} for an \times cut surface we will now also use $c_{11}{ }^{\prime}$ and $e_{11}{ }^{\prime}$ for an x^{\prime} cut surface. Similarly there will be unprimed and primed terms f_{r} ($\left.\rho t\right)_{s}$, R_{v}, R, etc.
The ($\alpha, 0$) designation of the x^{\prime} cut, P location is according to Fig, 3. The angle α is measured between the X and X^{\prime} directions, i.c., between $O C$ and $O P$. The angle θ is mensured between the $X Z^{\prime}$ plane, in which plane P lies and the $X Z$ plane (X and Z refer to crystallographic ases, and Z^{\prime} to an axis normal to X but at the angle θ to Z). The sense of 0 is chosen so that a miuor cap face plane of cquartz is parallel to the $\theta=+38^{\circ} 13^{\prime} X Z^{\prime}$ plane.
The value of α for a point P on the periphery of the utilized aren of the radiator (the area covered by electrodes on both sides) is denoted by α_{p} and is called the half-angular-aperture of the meniator. A full hemispherical radiator, $\alpha_{p}=90^{\circ}$, would include: three truly x cut areas at ($0^{\circ}, \theta$) and $\left(60^{\circ}, \pm 90^{\circ}\right)$; four y cut arens at $\left(30^{\circ}, \pm 90^{\circ}\right)$ and ($90^{\circ} \pm 00^{\circ}$); and two z cut areas at ($00^{n}, 0^{\circ}$) and $\left(90^{\circ}, 180^{\circ}\right)$. Practically, a radiator would normally be made with a hill-angular aperture smaller than $\alpha_{p}=30^{\circ}$, thus eliminating the inactive y and z cut areas, and the outer x cut areas which are out of phase with the rumaining central x cut area at ($0^{\circ}, 0$). However, the sespecific orientations are especially useful in checking the formulas to be developed for $c_{11^{\prime}}$ and $e_{11}^{\prime} v s$. ($\alpha, 0$). Likewise points in the $X Y$ plane ($\kappa, \pm 90^{\circ}$) and in the $X Z$ plane $\left(\alpha, 0^{\circ}\right)$ or ($\alpha, 180^{\circ}$) are nseful, since formulas for

Fig. $10 . \lambda$ plot of ile frequamey depemient functions, : and !!', of formulas (IV.II) and (IV.23).
these planes are well-known and recorded in the literature."
We will now derive formulas for $e_{11}{ }^{\prime} / c_{11}$ and $c_{11}{ }^{\prime} / c_{11}$, where c_{11} and c_{11} refer to the x dircction as before, and e_{11}^{\prime} and $c_{1}{ }^{\prime}$ commonly make use of a different augular description than above described, namely: X^{\prime} makes the angles α, β, and γ with the X, Y, and Z crystallographic axes and have the direction cosines l, m, and n, respectively. Now a has the same meaning in either sy'stem, $l=\cos \alpha$, and it can be shown that $m=k \sin \theta$ and $n=k \cos \theta_{1}$ where $k=\sin \alpha,\left(l^{2}+m^{4}+n^{4}=1\right)$. Using these sub)stitutions for l, m, and n in standard formulas for quartz'2 we have

$$
\begin{align*}
& \frac{e_{1^{\prime}}^{\prime}}{e_{11}}=l^{3} \cdots 3 / k^{2} s^{2}, \tag{IV.18}\\
& \frac{c_{11}^{\prime}}{c_{11}}=l^{4}+k^{2} l^{2} p+k^{4} Q_{1} .
\end{align*}
$$

where
$P=2 s^{2}+\left(\frac{4 c_{44}+2 c_{13}}{c_{11}}\right) c^{2}+6\left(\frac{c_{14}}{c_{11}}\right)(2 s c)$,
$Q=s^{4}+\left(\frac{c_{13}}{c_{11}}\right) c^{4}+\left(\frac{c_{41}+c_{13} / 2}{c_{11}}\right)(2 s c)^{2}$

$$
-2\left(\frac{c_{16}}{c_{11}}\right) s^{2}(2 s c)
$$

$k=\sin \alpha, \quad l=\cos \alpha, \quad s=\sin \theta, \quad c=\cos \theta$.
"W. G. Cady, Piesocieatricity (AlaGraw-Hill Book Comjuny, inc., New York, (9,16), see Chaps. IV, VI, VIII, ${ }^{13}$ See e, ${ }^{\prime \prime}$, redierence (11). The formula for en' is given by (19.f), upon insertion of eif for quarta from p. 198 , Class is and f_{1} is given by (28) p. 70 , upon insertion of c_{i} for ctuarta fromi $\mathrm{p}, 55$, Group Vili.

Fig. 11. A plot of the piczoelectric variagions with oriestation (a, θ), formula (IV,IK).

Calculation of $c_{11}{ }^{\prime} / c_{11}$ is simplified by having all functions of θ separated into the P and Q formulas. Using W. P. Mason's 1943 values for the c constants, ${ }^{18}$

$$
\begin{array}{lll}
c_{11}=86.1 & c_{31}=107.1 & c_{44}=58.6 \\
c_{12}=5.1 & c_{12}=10.5 & c_{14}=18.2
\end{array}
$$

all times 10^{10} dynes/ cm^{2}, we lave

$$
\begin{align*}
& P=2 s^{2}+(2.97) c^{2}+(1.27)(2 s c) \tag{1~V.19}\\
& Q=s^{4}+(1.244) c^{4}+(0.742)(2 s c) \\
&
\end{align*}
$$

Figure 11 is a plot of $\left(c_{11}{ }^{\prime} / e_{15}\right)^{2}$ and Fig. 12 of $\left(c_{11} 1^{\prime} / c_{11}\right)$), both es. ($\alpha, 0$) and for quartz, It will be found that $e_{11}{ }^{\prime} / e_{11}$ and $c_{12}{ }^{\prime} / c_{11}$ cach reduce to unity at $\alpha=0$, and may te ferther easily checked for proper values for the specific ases and planes noted in a preceding paragraph, (The variation of the dieleetric constant K_{11}^{\prime} from the x cut value K_{12} is small, $K_{11}{ }^{\prime}=K_{11} \cos ^{2} \alpha+K_{3 a} \sin ^{2} \alpha$, and does not enter into the following formulas anyway.)
The parallel resistance at resonance R^{\prime} for the ($\alpha, 0$) location is given from (IV,1) as $R_{r}^{\prime}=(\rho v)_{, ~, ~} t^{2} /$ $4\left(e_{11}^{\prime}\right)^{2} A$, or in terms of R_{r} for x cut quartz, formulas (IV.4) or (IV.7), as
$R_{r}^{\prime} / R_{r}=\left(c_{11} / e_{11}^{\prime}\right)^{2}$, and $W_{r}^{\prime} / W_{r}^{\prime}=\left(e_{11}^{\prime} / e_{11}\right)^{2}$ (1 V .20)
Similarly, the fundamental resonant frequency f_{r}^{\prime} for the $(\alpha, 0)$ location is given in terms of f_{r}, formula (IV.6), by

$$
\begin{equation*}
f_{r}^{\prime} / f_{r}=\left(c_{11}^{\prime} / c_{11}\right)^{\prime}, \tag{IV.21}
\end{equation*}
$$

for a ratiator in which the thickness is everywhere the same. Actually, of course, R_{r}^{\prime} is not obtained

[^22]unless the exciting frequency is $N f_{r}$, i.e, a resonant frequency for this location.
In practice the whole radiator will be excited at a single resonamt frequency f (later chosen to be f_{r} or $N f$ r), and the off-resonance resistance at the ($\alpha, 0$) location is given by $R^{\prime}=\Omega^{\prime} R_{r}^{\prime}$. Taking account of (IV.20) and noting that the input, or radiated, power from the (α, θ) location is $V^{\prime}=V^{2} / R^{\prime}$, the resistance and power for the ($\alpha, 0$) location are each given in terms of the resonant resistance R_{r} and power IF^{\prime} for a standard x cut radiator by
and
$$
R^{\prime} / R_{r}:=\left(c_{11} / c_{11}\right)^{2} \Omega^{\prime}
$$
\[

$$
\begin{equation*}
J V^{\prime} / W_{r}=\left(c_{\square 1}^{\prime} / e_{11}\right)^{z} 1 / z^{\prime} \tag{IV.22}
\end{equation*}
$$

\]

where $W_{r}=1 \because / R_{r}$ and R_{r} is given by (IV.4) or (IV.7), e_{11} / e_{11} is given by (IV.18), and Ω^{\prime} is to be determined.
The frequency function Ω^{\prime} may be determined from formula (IV.10) by proper substitution. The impedance ratio $A I^{\prime}=\left(\rho v^{\prime}\right)_{q} /(\rho v)_{M}$ changes with orientation (α, θ) since $v^{\prime}=\left(c_{1} 1^{\prime} / \rho\right)$, but may be given in terms of M for x cut quartiz by $M^{\prime}=\left(c_{11}{ }^{\prime} / c_{11}\right)^{\frac{1}{2}} M$. In practice the whole radintor is excited at a resonant frequency of its center $f=n f_{r} \dagger$ this being the value to use for f in (IV.10). On the other hand f_{r} of (IV,10) is to be replaced by $f_{r}{ }^{\prime}$ the resonant frequency in the (α, θ) location, Fimally, taking account of (IV.21)

$$
\begin{align*}
& \Omega^{\prime}=1+4 M^{2}\left(f_{r^{\prime}}^{\prime} / f_{r}\right)^{3} \cot ^{2}\left[N(\pi / 2)\left(f_{r} / f_{r}^{\prime}\right)\right], \quad \text { (} \tag{IV.2.3}\\
& \left.=1+4 M^{2}\left(c_{11}^{\prime} / c_{11}\right) \cot ^{2}\left[N(\pi / 2)\left(c_{11} / c_{11}\right)^{\prime}\right)^{\prime}\right] .
\end{align*}
$$

where $M=(\rho v)_{Q} /(\rho v)_{M}$, sul)script Q standing for x cut quartz and $A I$ for the liquid medium. For quartz-to-water, as with (IV.11), $\left[\right.$ d $\left.1 I^{2}\left(c_{11}^{\prime} / c_{11}\right)-2\right]$ $\pm\left[400\left(c_{11}{ }^{\prime} / c_{11}\right)\right]$.

The dashed curves of Fig. 10 arc a plot of $1 / \Omega^{\prime}$ vs. (f_{r} / f_{r}^{\prime}) for quartz-to-water, the upper curve apply-

Fig. 12. A plot of the elastic ar frequency constiant varinfions with orientiation (α, θ), frormulats (IV,18), (IV.19), inm (IV.21).
\dagger A smath gain in onfpat may be oltained by optratiag at a stightly higher frefuency, but his will not the developed here.

Fig. 13, Ratiation efficiency mersus ($\alpha, 0$) for a constam. thickness radiator aperated in the fundamental more.
ing when the fundamental resonant frequency for the $(\alpha, 0)$ location f_{r}^{\prime} is less than that of center f_{r}, and the lower curve when $f_{r}^{\prime}>f_{r}$.

D. Final Theoretical Results and Suggested Improvements

The final results of the above theory are given in Figs. 13-16. To facilitate use of the theoretical clata the α and θ coordinates have been recorded in polar form and the functions plotted versus (α, θ) are recorded as contours of constant values. This limited set of figures, derived for preceding formulas and curves, explains not only the action of standard, constant-thickness, quarty, focusing radiators radiating into water on one side only, but also shows how to design superior, variable-thickness radiators and explains their action. Both spherical and cylindrical focusing radiators will be covered.
Figure 13 is a plot of what is termed the radiation cfficiency in percent versus (α, θ) location for a constant-thickness radiator operated in the fundamental mode, The radiator is assumed to be operated at the fundamental resonant frequency of its center $\alpha=z e r o$ and to radiate a sound intensity of 100 units at this location. At any (α, θ) location falling on the curve labeled 50 (e,g., $\alpha=15^{\circ}, 0= \pm 90^{\circ}$) the radiated intensity will then be 50 percent of that at the center. For any (α, θ) location on the curve labeled 25 (e. g., $\alpha=20^{\circ}, \theta= \pm .90^{\circ}$) the radiated sound intensity will be down to 25 percent of that at the center. It is to be noted that for a radiator with the periphery of its effective area at $\alpha=30^{\circ}$ there would be over one-half of the effective area radiating with an intensity less than 25 percent of that at the center. $\dagger \dagger$ Thus there is little advantage in constructing a radiator with a halfangularaperture greater than 15 or 20 clegrees.
Another important feature of Fig. 13 indicates a preferred design for a cylindrical focusing radiator

[^23]

Fig. 1.t. Radiation efficiency tersus (α, θ) for a constompthickness radiator operated th the third harmonic mode.
(that is a constant-thickness, cylindrical shell, for obtaining a line focus). Note that the radiation efficiency drojs off, from center to edge, most rapidly in the $0 \div+35^{\circ}$ plane and least rapidly in the $\theta=-23^{\circ}$ plane (as wis also slown by the radiation patterns (Figs. 4 and 6, respectively)). Thus it is seen that a constant-thickness cylindrical radiator should be made with its curvature in the $0 \pm-23^{\circ}$ plane.
The above figure was derived from a plot (not slown) of $W^{\prime \prime} / W_{r}^{\prime}=\left(e_{11}{ }^{\prime} / \mathcal{c}_{11}\right)^{2} / \Omega^{\prime}$ vs. ($\kappa, 0$), formula (IV.22), where ($c_{11}{ }^{\prime} / e_{11}$) may be obtained from (IV.18) or Fig. 11, and Ω^{\prime} from a substitution of $\left(f_{r}^{\prime} / f_{r}\right)=\left(c_{11}^{\prime} / c_{11}\right)$ values from (IV.18) and (IV.19) or Fig. 12 in formula (IV.23) or Fig, 10, dashed curves. The major ciuse for loss of efficiency on receding from the center is due to the off-resonance effect, as given by $1 / \Omega^{\prime}$ (compare Fig, 13 with Fig. 16, for which $W^{\prime \prime} / W_{r}=\left(c_{11}^{\prime} / c_{11}\right)^{2}$ alone $)$.

Figure 14 is a plot of the radiation efficiency versus (α, θ) for a constam--lichiness radiator operated in the third harmonic made. The description of this figure is like that for the preceding Fig. 13, fundimental operation, except that here the drop-off in efficiency on receding from the center is markedly greater. For thirsl harmonic operation alone there is a little advantage in using a balf-angular-aperture greater than $\alpha=10$ to 15 degrees. (As the order of harmonic is raised heyond the third this restric-

Fig. 15. Frequency consiant ind corrective thickness-siaping ts. $(\alpha, 0)$.

Fig. 16. Radiation efticiency vos. (α, o) for a thickness-shaped radiator, any larmonic mode of operation.
tion becomes still more pronounced. The very marked superiority of the $\theta \approx-23^{\circ}$ plane over the $\theta \pm+35^{\circ}$ plane is also shown in the radiation patterns of Figs. 5 and 7, respectively. As noted above the major cause of off-eenter loss of efficiency is due to the off-resonance effect. Thus the shape (ancl values) of the efficiency plots of Figs. 13 and 14 are largely dictated by the frequency versus ($\alpha, 0$) location curves as will be seen from the deseription of the following figure.
Figure 15 is a plot of frequency constant and of corrective thickness-shaping vs. (α, θ). In the first use of this figure, the center of the radiator is assumed to have a resonant frequency of unity at the center, and at any other location ($\alpha, 0$) the resonant frequency is given by the contour passing through this location (or by extrapolation). Thus at the location ($15^{\circ},+35^{\circ}$) the frequency is 1.06 times that at the center. It is clear that the resonant frequency is equal to that at the center for all values of α in the planes $\theta \doteq-23^{\circ}$ and $\theta= \pm 90^{\circ}$, and varies most rapidly in the $0 \div+35^{\circ}$ plane, as is also shown in the last case by the radiation paterns of Figs. 6 and 7. The values recorded are, of course, indepenclent of the order of harmonic operation. Since the whole radiator must be driven at a single frequency there are necessarily large arens which are driven off-resonance and hence more weakly than if driven at resonance. This explains the major lossess of efficiency recorded in Figs. 13 and 1 t.
The above figure is derived direetly from Fig. 12 whiel is a plot of $f_{r}^{\prime} / f_{r}=\left(c_{11}^{\prime} / c_{11}\right){ }^{\text {i }}$ ts. (α, v), obs tained from formulas (IV.18) and (IV.19). Now the large lass of efficiency due to off-resonance operation of the constant-thickness radiator can be eliminated if the radiator is thickness-shapel in such a manner that the resonant frequency is everywhere the same. Since $f_{r}=\left(c_{11} / 4 \rho\right) t / t$ at the center and $f_{r}^{\prime}=\left(c_{1_{1}}^{\prime} / 4 \rho\right)^{1} / t^{\prime}$ at an $(\alpha, 0)$ location, then if $f_{r}^{\prime}=f_{r r}$ $t^{\prime} / l ⿷\left(c_{11}{ }^{\prime} / c_{12}\right)$. Hence Fig. 15 is also a plot of the required t^{\prime} / t us. (α, θ) to obtain a radiator with a single value of resonant frequency all over.

Thus Fig. 15 also shows the corrective thicknessshaping recpuired to obtain a superior radiator. In all areas where curve is labeled 1.00 the thickness is to have the proper value of t to give the desired frequency $f_{r}=\left(c_{11} / 4 \rho\right) 1 / t$. For (α, θ) locations on the curve labeled 1.04 the radiator is to be made thicker, $t^{\prime}=1.04 t$, and along the curve 0.96 chimer $t^{\prime}=0,96 l$. The accuracy of this adjustment need not be great for, as seen from Fig. 10, an error of 1 percent in thickness will result in a loss of only about 10 percent in radiation efficiency. The improved efficiency of a properly thickness-shaped, constant-freguency radiator is shown ly the following Pig. 16. J. F. Muller of these Laboratories has atdjusted a 1 -Mc racliator with a half-angular-aperture of $\alpha=14^{\circ}$), and with a very moderate effort has obthined about one-half of the expected improvement.
Figure 16 is a plot of the radialion efficiency ws. ($\alpha, 0$) for a thickness-shapod radiator, any mode of harmonic operation. The off-center loss of efficiency here results only from the drop-off of the effective piezoelectric constant, since the whole radiator now las a uniform resonant frequency. The plot is obtained directly from Fig. 11, or formulas (IV.20) and (IV.18) (the small change of R_{r} with $l_{\text {, formula }}$ (IV.1)), has been neglectecl. The great gain in efficiency of outer regions is ipparent, compare with Figs, 13 and 14, especially for harmonic mode operation.
It is clear that a sumerior eylindrical radiator would have its curvature is in the $\theta=$ zero-degree plane (i.e., the $X Z$ plane), providing it is appropriately thickness-shaped according to lig. 15. In this cylindrical case approximately correct shaping is casily obtained by using truly circular curves for both concave and convex sides, the convex ratius of curvature being somewhat greater than the sum of the central thickness and the concave radins, thus making the radiator thicker at the edges than the center (like a diverging concave-convex cylindrical lens).
At the begimning of this section it was noted that the results to be given were for quartz radiators radiating into weater on one side only. For radiation into other liquids (or into water on both sides) some of the above results will he different. Since only Ω^{\prime} is atfected by the radiation medium through M, formula (IV.23), only Figs. 13 and 14 will be changed. Further since M does not vary greatly among non-metallic liquids, even these figures will be approximately true for most cases.,

It might be noted in closing that the principles and general formulas above applied to quartz focusing radiators may also be applied to radiators of other crystalline materials. In the case of tourmaline, for example, the standard, unshaped radiator would be a $\%$ cut, the axis of the radiator being
parallel to a z crystallographic axis, The characteristics of the center of the radiator would be given by the $e_{3,1}$ and $c_{3 j}$ constants, and at: $(\alpha, 0)$ locations by e_{33} and $\varepsilon_{3 s}$ formulas (which are, of course, clifferent from those for quartiz). While the
frequency constant varies less in toumaline than in quarta, the effect of driving off-resonance is greater so that chickness-shirping is still worth while, Orientations other than truly $\%$ cut are also indicated.

Ultrasonic Lenses of Plastic Materials

Danimle Sitter

Jstitula Nasionale di Elettroacustica "O. Mr. Corbino," Rome, Ilaly
(Received May 13, 19.99)

Abstract

The properties of certain plastic substances lave been examined with the idea of using them to construct solid lenses for focussing ultrasonic radiation. Some experiments are described which illustrate the advantages offered by auch lenses. The tuse of a plano-cylindricat or a plano-splicrical tena permits a reduction to $1 / 10$ or $1 / 100$ respectively of the energy which must be enitted by a quartz crystal to produce a given intensity of ultmsonic radiation over a given region.

INTRODUCTION

I^{T}Tis undoubtedly useful to have available ultrasonic waves of high intensity, even if the region in which they can be propagated is relatively small. It would be advantageous, therefore, to achieve a concentration of the radiation sent out by the source by means of a dioptric system similar to those used with light.

Hopwood' suggested some possible methods of constructing dioptric acoustic systems, but the first experimental system, using aluminum lenses, was made by Bez-Bardilli. ${ }^{\text {? }}$
Giacominis and afterwards, Polaman, ${ }^{4}$ employed lenses formed by a thin envelope of solid material, filled with a liquid. Ernst ${ }^{6}$ observed recently that: modern plastic materials have physical properties which allow the construction of promising dioptric systems.
This paper deals with experiments with plastic lenses. The concentration of the energy was studied when the lenses were either in the path of the radiation in the liquid, or in contact with a quartz generator. The advantages of these plastic lenses were extended to liguids that dissolve the material,

[^24]using arrangements such as doublets, formed by a solid lens and a liquid one.

characteristics of lens materuals

The material must possess the following: a velocity of propagation as different as possible from that of the liquid medium in which the lens is to be used; a characteristic acoustic impedance as close as possible to that of the surrounding liquid; and finally, a low coefficient of absorption. The velocity referred to is that of longitudimal waves since the propagation in the solid, under the circumstances of interest to us, occurs mainly by longitudinal waves. .
There are certain plastics that satisfy the required conditions. Ernst has suggested polystyrene and polymethylmethacrylate. We have found it convenient to use polymethylmethacrylate (Plexiglas), which appears to be the best lens material among those studied. ${ }^{6}$

It is necessary to determine the velocity of propagation of longitudinal waves in the lens material. We made a measurement based on the refraction produced by a prism with one face normal to the incident ultrasonic beam. Under such conditions, the propagation within the prism occurs essentially by longitudinal waves having a velocity: $c=(K / \rho)$, where K is the bull modulus.

Figure 1 shows the ultrasonic field rendered visible by the striation method, The arrow indicates the tirection of motion of the waves emitted by a quartz vibrator with a frequency of $8 \mathrm{Mc} / \mathrm{sec}$. The angle of incidence on the exit surface of the prism

[^25]is 45 derrees. The liquid is distillet water at a temperatare of $15^{\circ} \mathrm{C}$. Applying the refraction taw to the transition from Plexighs to water, we wh. tained for the velocity in Plexiglas: $2820 \mathrm{~m} / \mathrm{sec}$. The characteristic acoustic resistance, ρc, referring to the propagation of longiturlinal waves is, haere: fore, $3.3 \times 10^{5} \mathrm{~g} / \mathrm{cm}^{2}$ sec., the density lowing 1.18 $\mathrm{m} / \mathrm{cm}^{3}$.
Spectial attention should be drawn to the chemical properties of this plastic. Gemerally, aftueous solutions of inorganic sailts do not alter the materiat, bat the hydrocarbons imel many ofher orginic:

Fig. 1. Deflection of an ultrasunic bean through a Plexiglas prisu.

Fig. 2, Ulerammic tucam in witer, by a mpare quartz, $16 \times 16 \mathrm{~mm}$; the frepuency is $8 \mathrm{AIc} / \mathrm{sec}$.
liquids dissolve it. We observed, however, Hat carbon clisulphide dows not affeet the Plexightas.

SOLID ACOUSTIC I.ENSES

The eharacteristics of the materials that we have considered above make deen suitible for focussing aconsitic rathation according to a method analogons to that used in ophics. It is necessitry, however, to point out that the abailogy is not perfect. It must be remembered that even in the case of ultasonic waves of high frequency, the wave-fengels are much greater than those of light: fur thermore, the propagation of elastic waves in a solid is not perfectly analogous to the propagation of visible radiation.

Fits. 3. Jlexiglas leat (r m 25 man) in water.

Fitg, 4. Plexiglas lens $(r=30 \mathrm{~mm})$ in water,

We have found it desirable to have the radiation strike a tens at nomal incidence to a plane surfince since the energy that succeeds in passing through a phane cylinctrical lens diminishes greaty if the surface of entry is the cylindrical surface instead of being the plane one. It is preferable, furthermore, that the thickness of the lens be as small as possible in view of the noticeable alsorption.
For a plano-cylindrical or planospherical lens, arranged as above, it is easy to establish a relationship which approximately describes its betavior If the radiation falls normally on the plane surface of the lens, it continues to propagate in the solid in the sanne direction in the form of longitudinal waves, On the spherical or eylindrical face, the incident longitudinal wave gives rise to a refracted wave in the liquid and two reflecterl waves in the solid, one of them being longitudinal, the other transverse. If we take into consideration the ab-

Ftg. 5. Diffraction patterns: a-g with a leas (r a 25 mun); $h-p$, without a lens.

Fitg, 6. Diverging Plexighas lens ($r \mathbf{a} 25 \mathrm{~mm}$) in water.
sorption of the material and neglect the comtribution to the transmission which is made by the two waves arising in the solid at the curved surface, the behavior of the lens is determined solely by the refraction at the spherical or eylimdrical sutrface.
Even taking into accoment the difference in the wave-lengthe in the aconstic case and in that of visible radiation, one can validly estend the formula for optics to this case; the foctusing effeet is approximately, ${ }^{\text {a }}$

$$
\begin{equation*}
f=\frac{r}{1-V_{t} / V_{.}}=\frac{r}{1-\left(1 / h_{4}\right)} . \tag{1}
\end{equation*}
$$

In this relationship f is the fowal distance, r is the radius of the spherical or cylimdrical surface, and $V_{d} / V_{1}=n_{a}$ is the index of acoustic refraction for transmission from the solide to the liquid medium.
The velociey in the solid, $V_{\text {of }}$ is greater than that in the liquid, V_{1}, and therefore the denominator of Eq. (1) is alway's positive, that is, the lens is convergent or thivergent depending on whether it is concave or conves. Furthermore, we can see that the focal length of a lens varies considerably with the velocity of the liquid in which it is immersed.

SOME ACOUSTIC SOLID LENSES USED

Figure 2 shows, by the striation method, an wherasonic beam directed into water from a vilorating quartz erystal at a frequency of $8 \mathrm{Mc} / \mathrm{sec}$., while Fig. 3 shows how the beam is concentrated when a Plexighas plano-eylindrical lens with a radius of

[^26]curvature of 25 mm is interposed normal to the clirection of propagation. Similar results were obtained when a lens with a radius of curvature of 20 mm was used.
The validity of Eq. (1) is well contirmed experimentally. For example, it the experiments to which Fig. 3 relates, the temperature of the water was $16.7^{\circ} \mathrm{C}$ and therefore the velocity of propagation was $1476 \mathrm{~m} / \mathrm{sec}$. According to Eq. (1), the focal length should be 52.5 mm , and the measured focal length checked this value within experimental error.
Figure 4 shows an ultrasonic beam incident of the center of a plano-cylindrical lens ($r=30 \mathrm{~mm}$). As can be seen from the pholograph, the lens still focusses reasonably well.

In the construction of lenses, it is desirable to reduce their thickness to a minimum. The lens of Fig. 3 is 1 mm thick along the focal axis.
It is interesting to observe in Fig. 3 the increased Iuminosity near the focus, caused by the concentration of energy. In order to obtain a better picture of the focussing action, we have directed into the liquid a parallel heam of monochromatic light through a small rectangular zone, centered on the focus of the acoustic lens. The diffraction patterns produced by the ultrasonic waves are photographed with a single lens. Figure 5 reproduces these photo-

Fig. 7. Contact lens,

Fig. 8. Optical arrangement for observation of the linuid surface receiviag the ultrasonic heam.
graplas ($\mathrm{a}-\mathrm{g}$), obtained by varying the voltage across the quartz plate, betwen 10 and 100 volts at intervals of 15 volts. It is apparent that the namber of the observalle diffraction images increases with the voltage aud that the greatest intensities are observed on the axis. The other diffraction patterns (h-n) refer to the same zone of the ultrasonic field when examined after removal of the lens. Comparing photographs obtained with the same voltage across the quartz, e.g. 100 volts, one can observe the great advantage resulting from the use of the lens in spite of the absorption in the solisl material. For the lirst appearance of the third order pattern, the quartz plate needs 85 volts, while the use of the lens reduces the supply voltage needed to 25 volts. To obtain the same intensity, the ponential required with the same lens is reduced by a factor of 3\} and therefore the energy emitted by the quartz is reduced by a factor of 11 . Figure 6 shows the effect on the beam of Fig, 2, produced by a divergent lens ($r=2.5 \mathrm{~mm}$).

CONTACT LENSES

A better performance and a more practicable system can be obtained by placing the Plexiglas lenses directly in contact with the quarta emitter: in this way the energy is transmitted directly from the quartz to the Piexiglins, and from the latter to the liquid. Since the characteristics of the Plexighas are intermediate between those of the quartz and those of the liquid, the presence of the lens facilitates the transmission of energy from the quartz to the liquid.

Figure 7 shows some contact lenses that we have constructed. The plane surface of the lens is silvered and forms one of the electrodes between which the quartz is held. The other electrode consists of a small cylinder filled with air, having very thin walls. This ensures that the ultrasonic radiation occurs essentially from one side only oi the quart\%, thus allowing a better performance. We have made two lenses of this type, one plano-cylindrical and one plano-spherical, both laving the same radius of curvature ($r=25 \mathrm{~mm}$) and therefore the same focal lengeth, if used in the same liquid. In order to show their performance, we have eximined the ultrasonic beans emergent from these lenses when used with
the same quartz. For comparison, we have tried a third case in which the quartz, arranged in a manner identical with that of Fig, 7, is placed lelind a disk ..- of Plexiglas of thickness equal to that of the lenses along their focal axes (1 mm),

In all three cases the quartz has been placed horizontally to give an upward radiation and at the same depth below the surface of the liguid. The ultrasonic radiation which reaches the surface of the liquid catses an increase in curvature with an
increase in intensity. It is possible in this manner to cletermine the cross-section of the beam. Observations of the strface of the lifuid are made by the method suggested by Toepler, illustrated in the dingram of Fig. 8. The source and the condenser L_{1} form a secondiary point source at the circular wiadow S_{1}. The luminous rays from this secondary source are cleviated by a prism aud made parallel by a lens L_{z}. The beam is reflected from the strface of the liquid, and then by a mirror. The lens L_{s}

 the gunrtz and the supplying voltages are 75,150 and 250 volis; in d, e, f, the lyexiglas disk is silbstituted by a cylindrical
 voltages are 15, 20 and 30 volls. Frequency: $4,2 \mathrm{Mc} / \mathrm{sec}$. Liquid: parafin oil.
focuses the beam in the phane of the screen S_{2} giving ant image of the source and ant inage of the surface of the liguid on the ground glass screen, V. The screen S_{a} hats a circular hole that will pass only rays reflected from the horizontal surfice of the liquid, In the curved zone of the liquid surface, the rays are reflected in different directions and are stopped by the sereen S_{1}. On the ground glass screen, the image of the surface appears minformly illuminated if the liquid is at rest, :thed appears clark where ultrasonic radiation strikes the surface.

By varying the depth at which the lens is immersed, it is possible to place the foeus at the surface of the liquid, and so to measure the focal length.

The photographs of Fig. 9 show the results of experiments in parafin oil, for several input voltages under the following conditions;
A. disk of Plexiglas in comact with the gutaria ($\mathrm{a}, \mathrm{b}, \mathrm{c}$),
13. plano-cylindrical lens (d, e, 1).
C. plano-spherical lens ($\mathrm{g}, \mathrm{h}, \mathrm{i}$).

The frequency is 4.2 megacyeles, the deph of immersion about 50 mm . It is olvious from these photographs that excellent focussing can be obtained with stach lenses.
The method of evaluation adopted, which makes use of the surface tension of the liquicl, does not

Fig. 10. Double lens, for lirquid dissolving the lyexights.
permit of a quantitative measurement. As a qualitative indication, the potentials necessary to oblain the first slight shade in the image are : for the disk, 38 volts; for the cylindrical tens, 13 volts; for the spherical tens, 3 volts. This is a rough indication, but it igrees fairly well with the results of the section on some acoustic solid tenses used, and clemonstrates the advantages which may be obtainect.

lens for li@uids that dissolve plexiglas

In the experiments described alove, many common organic liquids could not have been userl beciuse they dissolve Plexiglas, We have alopted the arrangements shown in Fig. 10 to eliminate contact between the Plexiglas and the external liquid. The quartz in this ease is in contact with the plane surface of the Plexiglas lems, but the latter is not immersed in the external liquid. The Pexighas is, instead, in contact with a liquid which has an effect on it, This liquid, that fills the cavity formed by the Plexiglas lens and a mica window, is introchaced through two channels that communicate with two tanks.
The refractive element interposed between the quarta and the external liquid is composed of a solid contact lens and it ligtuid lens formed by the liquid that fills the space between the solid lens and the mica window, The optical formula can be apptied, the focal length of the doublet being given by

$$
\begin{equation*}
1 / f=1 / f_{1}+1 / f_{2} . \tag{2}
\end{equation*}
$$

The focal length of the soliel letis $\left(f_{1}\right)$ is positive because the tens is concave, while the focal lengeth of the liquid lens (f_{2}) can be either positive or negative, depending on the values of the velocities in the liquid of the lens and in the external liquid. For this liquid lens we can find a relationship similar in Eq. (1):

$$
\begin{equation*}
f_{1}=-\frac{r}{1-\left(V_{2} / V_{1}\right)}, \tag{3}
\end{equation*}
$$

V_{z} being the velocity in the external liquid, and V_{1} that in the liquid of the lens.

The suletion among those liquids which do not attack Plexiglas must be made also from the point of view of the velocity, remembering that it is desirable for it to have a characteristic acoustic impedance intermediate between that of Plexighas and that of the external liquid. Furthermore, the coeflicient of absorption ought to be as low as possible. Water and earbon disulphide lend themselves very well in most cases.
Figure 11 shows the operation of such a system. The cylindrical surface has a radius of 25 mun, the
liquid medium of the lens is water, while the external liquid is xylol.

CONCLUSIONS

In contrast to other systems which lave been suggested in the past for the construction of acoustic lenses, plastic materials allow a more simple construction because of the ense with which they can be worked mechanically. Moreover, the chemical properties of such materiats do not impose any great limitations, since it is easy to avoid contact between the plastic materials and any liguid in which they dissolve. The concentration of energy produced by sucls systems is very satisfactory. It can, in fact, be said thate the use of a plano-cylindrical lens permits a reduction of the energy emitted by piczoelectric quartz to one tenth to obtain the same intensity in a certain region of the ultrasonic fied. Finally, a plano-sphericallens under the same conditions reduces the energy to one hundreclth.

Acoustic lenses constructed from such phastic materials appear to be useful when it is necessary to produce high intensity ultrasonic radiation over a shall area.

Fite, 11. Double lens, containing a lifuid lens (water), in xylene.
The author wishes to thank Professor A. Giacomini for having suggested the subject of this research and for the advice the has given while it was being carried out.

A Low "Q" Directional Magnetostrictive Electroacoustic Transducer

Leon Cami and Franets D. Werta
Ordnanco Research Laboratory, Penusyletnia Shto College, State College, Pemsylumiat (Received April 30, 19.49)

> The elescription of a lamination design for the magnetostrictive motors of a directional transducer array. The design makes possible the effient operation of the tratsolacer with a " Q " of 6 under a full water load. Array patterns are presented to show that the haninated shotors radiate as plane pistons into the meditum.

I. INTRODUCTION

DIRECTIONAL magnetostrictive transducers for use as underwater sound projectors and receivers may consist of arrays of longitudinal meclanical vilrators bonded to a common diaphragm or sound window. The individual vilbrators are bar-like structures, laminated to decrease eddy current losses. One end of each bar presents a radiating surface transmitting sound through the window to the medium. These surfaces are spaced so as to cover about 80 percent of the window area, and the vibration of each may be controlled in amplitude and phase to produce the desired sound pattern.
The longitudinal vibrators are mechanically resonant systems having an optimum efficiency of energy conversion in the vicinity of the resonant Frequency. For example, a transducer in a constant pressure sound field will develop a voltage across its terminals which varies with frequency in a manner illustrated by Fig. 4. The band widh of the

Fig. 1. $8 . \mathrm{f}$-ke lamination.

Fig. 2. Simplified form of hamination.
response curve may be described in terms of its " Q " given by the quotient of the band width between the 3 db down points into the frequency of the peak response. This quantity is determined by the mechanical " Q " of the resonant system where

$$
\begin{equation*}
Q=\Delta \omega_{0} / R . \tag{1}
\end{equation*}
$$

\sqrt{I} is the equivalent mass of the resonator, ω_{0} its resonant angular velocity, and R is the dissipative load imposed upon it.

One advantage of the laminated type of magnetostrictive transducer is the possibility it offers for wide variations in band widhss through proper design, A recent papert indicated a practical range of Q from 6 to 40 for this particular style of lamimation. As the possibility of the Q of 6 has been questioned, its design was undertalien at the Ordnance Rescarch Laboratory of the Pennsylvanial State College, and simple arrays were constructed to test its behavior.

II, LAMINATION DESIGN

The lamination is shown in Figs. 1, To calculate the mechanical " Q " of this system according to Eq, (1), its equivalent mass must be determined. By equivalent mass is meant the mass which a simple spring and mass system would have if this mass and spring, moving with the same frequency and amplitude.as the radiating end of the lamination of Fig. 1, possessed the same amount of energy as that of the lamination. Figure 2 shows a simplified form of Fig. 1. When the system of Fig. 2 is vibrating longituclinally in its fundamental mocke, the velocity amplitude ξ may be expressed as the following functions of x :
$0<x<b ; \quad \dot{\xi}=A \cos k \cdot x$
$b<x<b+a+a ; \quad \xi=A \frac{\cos k b}{\sin k a} \sin k(b+a-x)$
$b+a+q<x<b+a+q+L ;$

$$
\begin{equation*}
\xi=-A \frac{\cos k b \sin k q}{\sin k a \cos k L} \cos k[x-(b+a+q+L)] \tag{2}
\end{equation*}
$$

1L. Camp, J, Acous. Soc. Am. 20, 616-19 (1948).

Let units be chosen such that the area of the radiating face of a stack of the laminations is unity. At a time when all of the energy is kinetic:

$$
\begin{aligned}
& \frac{1}{2} h A^{2}=\left.\frac{\rho A}{2}\right|_{0} ^{1} \int_{0}^{b} \cos ^{2} k x d x+\frac{1}{6} \frac{\cos ^{2} k b}{\sin ^{2} k a} \\
& \times \int_{b}^{b+a+q} \sin ^{3} k(b+a-x) d x+\frac{\cos ^{2} k b \sin ^{2} k q}{\sin ^{2} k a \cos ^{2} k L} \\
&
\end{aligned}
$$

or

$$
A=\frac{\rho}{2}\left[b+(q+a) \frac{\sin 2 k b}{\sin 2 k a}+L \frac{\sin 2 k b \sin 2 k q}{\sin 2 k a \sin 2 k L}\right]
$$

III. EXPERIMENTAL DATA AND CONCLUSION

Stacks were made, using the laminations of Fig. 1, from 0.004-in. 2V Permendur with Cyelewed C-3 cement serving as insulation and bonding agent between laminations. This structure has a density of 6.2 and the velocity of sound in it is 5.25×10^{6} $\mathrm{cm} / \mathrm{sec}$. The other quantities are: raliating area $=1.7 \mathrm{~cm}^{2}, k=2 \pi / \lambda=1,00$ radians $/ \mathrm{scc} ., \quad a=0.742$ $\mathrm{cm}, b=0.175 \mathrm{~cm}, q=0.216 \mathrm{~cm}, L=0.633 \mathrm{~cm}$, $f_{0}=84 \mathrm{kc}, M=1.85 \mathrm{~g}$ per unit radiating aren. In addition to the radiation load, there are losses associated with the unloaded oscillator which may

Fic. 3. Mational impedance of unloaded stack.

Fiti, 4. Open circuit voltage resjomse.
be determined from the Q of the motional impedance circle shown in $\mathrm{Fig}, 3$. If R_{i} is the loss associated will thit radiating areat and the total area is A,

$$
\begin{aligned}
& Q=\sqrt{7} \omega_{0} / R_{i} A=41 \text { from impedince circle, } \\
& R_{i}=\frac{1.85 \times 2 \pi \times 8.4000}{41 \times 1.7}=14000 \text { oluns. }
\end{aligned}
$$

With the additional radiation resistance of ρC into a water load, the Q of this transducer should be

$$
Q=(1.85 \times 2 \pi \times 84000) /\left(1.64 \times 10^{8}\right)=6,
$$

which is the value shown by the response curve of Fig. 4.

Fig, 5. Radiation jattern of a single stack,

Fig. 6. Radiation pattern of annestack square array.

Three other questions to which the experimental data provide answers are: (1) Does the radiating face of a stack of the laminations behave like a piston when driving into water? (2). What is the efficiency of a transducer made of these stacks? (3) What is its power handling capacity?

Figure 5 is a measured pattern in the plane of the laminations for a single stack compared with the theoretical pattern of a plane piston. Figure 6 is a similar comparison of the pattern of a nine-stack square array, all stacks driven uniformly. These patterns show that the stacks do radiate as pistons into water. The directivity ratio of the array is 0.01 , its input impelance at 84 kc is $100+j 394$ obms. Using these data and the open circuit voltage response, the efficiency of the transducer is -3 db . This transducer operates on the remanent magnetization of half-hard Dermendur. From the impedance, the number of turns in the exciting coils, and the stack dimensions, it can be shown that the stack can be safely driven with 20 watts r.m.s. power. The power handling capacity may be greatly increased by using a soft material and some means of polarization.

Direct Reading Microdisplacement Meter

J. P. Akndt, Ju.

The Brush Detwlopment Compony, Clevelamd, Ohio
(Received March 7, 10.40)
Fepuipment has down buill for moastring vilratory displacements of very smatl medunical elements such as phonograph styli and plezoelectrie erysials, It employs a probe of whald dimeasions in that virtailly point measitrements may be mate. The probe dots not contact the point under measurentent and therefore jomposts no mechanital dow, Tle variation in capacitance between probe and vibrating surface is used to mestare the displacement. Through the use of a buith+in calibrator, the sensitivity may be adjusted electrically for direct meter reading of vibratory displacement without resorting to precise adjustment of condenser plate spacisg. Displitetnent amplitudes of less than 10^{-4} can may be measured. 'l'se output sigull corresponds accurately to the displacenent both in magnitude and in phase over a wide fredachey range so that complex vibrations are portrayed accurately on a cathode-ray oscilloscope. The equipment has been eatibrated by four independent methods, including a reciprocity method, with close agreement.

INTRODUCTION

MANY convenient and accurate instruments are available for measuring impedance, voltage and current in electronic circuits, Unfortunately, in the development of mechanical vibrating systems, such as microphones and phonograph pick-ups, just the opposite situation exists. Analogous instruments for mensuring mechanical impedance, force, and velocity are not generally available, although many specialized instruments have been buile to meet particular requirements. Thus, several years ago when it became neecssary to measure the vibratory displacements of very sntall areas on piezoclectric crystals and to do so without imposing any mechanical load on the erystals, it was necessary to develop a special instrument for the purpose.

DESCRIPTION OF EQUIPMENT

The model to be described has been in constant use since early 1946 and incorporates the results of extensive experience with two predecessor models. It employs the well-known principle of imparting to a variable condenser the vibrations to be measured and including that condenser in the frequency determining network of an oscillator so that the oscillator is frequency modulated by the vibrations. The output of an $f-m$ receiver tuned to the oscillator thus corresponds to the vibations. A number of novel features are incorporated which permit reduction of the condenser plates to unusually small dimensions and which permit direct meter reading of displacenent or altermatively the determination of transducer sensitivity by a null method.
Figure 1 is a schematic diagram. At 1 is a piezoelectric "Bimorph" transducer element whose sensitivity is to be measured. A metal rod 2, having a diameter on the order of 0.04 incl, is supported with its end very close to the vibrating face of the crystal. The capacity between the end of the rod and the crystal electrode forms a part of the fre-
quency determining circuit of oscillator 3, which operates at about 100 mugacycles. The rod 2 , called a probe, is supported for endwise vibration on two leaf springs and can be excited in this mode of vibration by an $A D P$ "Bimorph" element 5. A voice coil 6 partakes of the same vibration as rod 2 , and hence the voltage induced in the coil is proportional to the velocity of the probe. A Miller type integrating amplifier 7 provides a voltage proportional to the vibratory displacement of the coil and prole. For convenience, the gain of the amplifier is preset to produce an ontput of 1 volt for $10^{-4} \mathrm{~cm}$ or $10^{-3} \mathrm{~cm}$ vibratory displacement of the probu, dapending on the position of a $10: 1$ attenuator. The adjustable phase shifter is designed to have negligible effect on the amplitude of the signal transmitted through it. Its purpose will appear later.
The instrument may be used in either of two ways, depending on the type of information desired. One is a batance or null method, and the other is a direct meter reading method.

BALANCE METHOD

In the balance method, the two erystals are connected to a common oseillator through separate potentioneters for individually adjusting the driving voltages. The circuit to the driving crystal 5 also includes an acljustable phase shifter, In operation, one potentiometer is adjusted to apply approsimately the desired voltage to the test erystal and then the oller potentioneter and the phase control are adjusted so that the test crystal and probe vibrate with equal amplitudes and exactly in phase. When this adjustment is accomplished there is no relative motion between the probe and the test crystal, and accordingly there is no frequency modulation of the oscillator. A null cletector at the output of the f-tu receiver indicates this condition.

Next the driving voltage on the test crystal is sampled by calibrated attenuator 8, and compared with the otput of the voice coil amplifier in a mull

Fic. I. Schematic diagram of microdisplace. ment meter.
detector. The amplitude of the voltage sample is adjusted by means of the attenuator to equal the output of the voice coil amplifier, and the phase shifter in the voice coil circuit is adjusted to bring the two voltages into phase opposition to achieve a balance,

With the two voltages equal, all necessary information is available for determining the sensitivity of the test crystal. Let:
$E_{v s}=$ voltage output of voice coil amplifier,
$D_{\text {er }}$ m displacement of voice coil,
$E_{x} m$ driving voltage on crysial l,
$D_{s}=$ diaplacement of crystal 1,
$E_{a}=$ voltage output of attenuator 8 ,
$S_{r y}=$ sensitivity of voice cuil bystem $m E_{v c} / D_{r e}$,
$S_{f}=$ siensitivity of crystal $m=D_{z} / E_{z}$, and
a attentator (8) ratiom $=E_{a} / E_{r}$.

Now by badancing the crystal and probe displacements we obtain the relation

$$
\begin{equation*}
D_{y 0}=D_{x} \tag{1}
\end{equation*}
$$

From the above definitions

$$
\begin{align*}
D_{v 0} & =E_{v n} / S_{v \varepsilon 1} \tag{2}\\
D_{x} & =S_{x} E_{x} \tag{3}
\end{align*}
$$

Substituting (2) and (3) in (1) we obtain

$$
\begin{equation*}
S_{x}=E_{v_{u}} / S_{\mathrm{re}} K_{X} \tag{4}
\end{equation*}
$$

By balancing the attentuator and amplified voice coil voltages we obtain the relation

$$
\begin{equation*}
E_{a}=E_{\mathrm{nc}} . \tag{5}
\end{equation*}
$$

From the defintion of a :

$$
\begin{equation*}
E_{11}=a E_{z}, \tag{6}
\end{equation*}
$$

Substituting (6) in (5):

$$
\begin{equation*}
E_{\mathrm{Df}}=a E_{r} \tag{7}
\end{equation*}
$$

Substituting (7) in (4):

$$
\begin{equation*}
S_{x}=a D_{x} / S_{v a} E_{x}=a / S_{v e} \tag{8}
\end{equation*}
$$

Thus the crystal sensitivity in $\mathrm{cm} / \mathrm{volt}$ is merely the reciprocal of the vuice coil system sensitivity (10^{3} volts $/ \mathrm{cm}$ or 10^{4} volts $/ \mathrm{cm}$) multiplied by the ratio a of the attentuator.

If the relationship between erystal displacement and driving current is required, attenuator 8 is replaced by a calibrated variable resistor in series with the crystal and adjusted to make the voltage drop atcross it equal to the output of the voice coil amplifier. Alternatively, the relationship between displacement and driving charge may be determined by placing a varialje calibrated condenser in series with the crystal and indjusting it so that the voltage across it equals the voice coil amplifer output.

Furthermore, input-velocity relationships of transducers may be determined directly by this balance method by eliminating the integrating amplifier so that the output of the voice coil amplifier is proportional to velocity rather than displacement. The balance method is rapid and convenient to use, it eliminates meter errors, and it reduces the computation of transducer sensitivity to a simple operation such as multiplying the attenuator ratio by 10^{-3} or 10^{-4}. Furthermore, reliable measurements can be made at amplitudes below the noise level of the expupment with the use of a tuned null detector to improve the precision of
balance adjustment. Use of the method is limited however, to relatively low frefuencies because of the rather large mass of the probe-coil-driving crystal system making it difficult to obtain sufficient amplitude of vibration of the probe at frequencies much above the resonance frequency of about 300 cycles. The equipment, however, is not limited to low frequency operation as the modulated oscillator $f-m 1$ receiver combination has uniform sensitivity over a wide frequency range, and by using a simple calibrating adjustment, direct meter readings of vibratory displacentent may be made.

direct reading method

For direct reading wide frequency range applications, it is necessary to caliliate the equipment for each setup as the sensitivity depends on the spacing of the probe from the vibrating objeet and the required spacing is too small for accurate preadjustment. With the test transelucer in place but not excited, crystal 5 is excited at 100 cycles to drive the probe with a desired amplitude as indicated by the voltmeter at the output of the voice coil amplifier. Since the gain of that amplifier has been preset to provide 1 volt output for 10^{-3} or $10^{-4} \mathrm{~cm}$, the meter reading in volts $\times 10^{-3}$ or ${ }^{10^{-1}}$ as the case may be equals the displacement in centimeters. The andio gain control in the f-m receiver then is set so that the volt meter at the receiver output has the same reading. Then it also reads directly the amplitude of vibration displacement of the probe, provided that the test transtlucer remains without excitation. Now it should be recalled that the $\mathrm{f}-\mathrm{m}$ receiver output is proportional to the relative displacement of probe and test crystal. Consequently, if the probe excitation is shat off and the test crystal excited, the f-m receiver meter reads the displacement amplitude of the test crystal. Since the response of the equipment is fat, calibration at 100 cycles serves for the whole audio frequency range. The vibration wave form of the test crystal may be observed on the screen of the cathode-ray oscillograph at the receiver output.

MRCHANICAL LOADING

One of the primary reasons for using a variable capacity as the measuring element was the fact that mechanical loading of the device under test could be reduced to negligible value even for vibrating systems of very low mechanical impedance. If the vibrating object under examination has a conductive surface as in the case of a flexing piezoelectric crystal element, that surface may be used as the vibrating condenser plate making it unnecessary to make any meclanical connection to the vibrating device. If the vibrating object is a good high frequency dietectric material, measurement also can be made without the addition of a condenser plate,
as will be shown later. In sone calses however, it many be desirable to provide a thin conductive surface by applying metal foil or condective paint. Thus for most purposes, the equipment measures vibratory displacement withom imposing any loading and may therefore be callest a zero impedance displacement meter.

PROBE

In order to measure the vibratory displacement of a very small object such as a phonograph stylus, or to explore small vibrating surfaces such as headphone diaphragms or fexing type piezoelectric elements, it was necessary to reduce the probe electrode area to a minimum; and in order to confine the measurement to a small area immediately opposite the probe, a shield was installed around the remainder of the probe. Figure 2 shows the probe construction, The metal rod 1 forming the probe electrode is pressed into a polystyrene rod 2. The base end of the rod then is monnted in a brass support 3 and the active end is turned down to a conc. Next a shield layer of condective paint 4 is applied to the whole atsembly including the exposed end of the rod 1 and overlapping the base 3 . After the paint has dried, the end of the prole is turned off llat until a very slight insulating ring margin appears around the clectrode separating it from the shield. The probe shied is "grounded" througl the lear spring suspension, The active probe connection is brouglt out through an openiug in the condlucting film slifeld by at small rod 5 . A very thin wire 6 connects this to a rigid conduetor 7 leading to the oscillator throush a shield 8. Interchangeable proles of various active areas are provided, the smallest having an active area of about 0.005 square inches although the sensitivity is adequate for use of much smaller areas.
When no external olject is located in the vicinity of the probe electrole, the oscillator frequency is determined in part by capacity due to electrostatic flux lines from the probe face blirough the air to

Fig. 2. Irabe details, The thickness of the slibld is exaggerated.
arljacent areas of the prothe shield. Now if a dielertric material having a diedertrie constant differing from thitt of air is brough up close to the prole, the dux density is modified by the dielectris. with comserguent change in oseillator frecphency. Thus, vibations of a dielectri: material can he measured without alding at conductive coating. In this case the dux comentration is mot as good is in the case of measurements of a condertive element and for this reason the application of a conductive surface sometimes is clesirable.

The mater of has concentation is ome of considerable importance, as very often it is desired to measure the vibration of a small area approaching a point. Since the electrostatic flax lines tend to spread out at the periphery of the electrode, the actual area over which measurement is madie is somewhat larger that the probe areat. This error decreases as the spacing hetween electrode and vibrating surface is made a smatler fraction of the probe diameter. The smallest prote that has been used las an active dianeter of $0,0+0$ inch. The spacing call readily he reduced to 0.002 inch or less
so that the frimging effer is mon serions ans lomen as small amplitules are involved permitting such rlose spacing.
Further importane of elose sparing and its limitations may be observed from the following approximate analysis which assumes that the frefueney deviation is very' sinall compared with the mean frecuency, a condition which always obtains in pactice when using such a small vibrating capacity, 'The frepuency deviation Δf resulting from a small change in eapacitance ΔC in an $L C$ oscillator is givell by

$$
\Delta f=f_{0} \Delta C / 2 C_{\|} .
$$

Where f_{0} is the frequeney of the umbodulater oscillator aud C_{a} is the umporlulated mapacitance of the osedlator circuis, Negleeting edge effects, the change in capacitance of a paratled plate condenser maving plate area A and plate spacing t is given by

$$
\Delta C=\kappa A \Delta t /\left(t^{2}-|\Delta|\right) .
$$

Where Δt is the change in plate spacing. Substi-

 wiol varions degrees of danging.
tuting this in the expression for freftency we have

$$
\Delta f=f_{0} L_{i} A \Delta t / 2 C_{0}\left(f^{\prime \prime}-\mid \Delta t\right) .
$$

The above expression for Δf shows that the frequency deviation and hence the f-m receiver output: is proportional to the displacement Δt to be measured only if the mean plate spicing t is large compared with the vibratory displacement Δt. If the spacing is too close, the wave form of the f-rm receiver output will be distorted. On the other hand, for a given vibration amplitude $\Delta /$, the deviation Δf incereases als the plate spacing t is decreased, making close spacing desirable for high sensitivity. Thus for measurement of very small vibratory displatements, very close spacing of probe and vibrating surface is desirable for sensilivity and can be employed without distortion. For large amplitudes larger spacing is required to preserve linearity but this is permissible because less sensitivity is required. Of course, the considerations of linearity apply only to the direct meter reading method of using the microdisplacennent meter.

SENSITIVITY

This relationship together with the fact that the noise output due to cirenit disturhances is not influenced by probe position, permits measurements over an extremely wide amplitude range. Within broad limits, provided that the probe spacing is carefully adjusted for the vibration amplitucle involved, the signal to noise ratio is virtually independent of vibration amplitude. Using the balance method, the maximum amplitude that can be measured is about $10^{-3} \mathrm{~cm}$ as that is the maximum amplitude available from the crystal driving the probe. In direct reading applications somewhat larger displacement amplitudes may be measured. The noise level corresponds to inn amplitude of about $2.5 \times 10^{-7} \mathrm{~cm}$ for the smallest probe so that in direct reading applications, mensurements can be made with reasonable accuracy at amplitudes of $2.5 \times 10^{-1} \mathrm{~cm}$ while for the null method using a tuned mull inclicator to sharpen the null, amplitudes as small as $10^{-7} \mathrm{~cm}$ may be measured.

OSCILLATOR-RECEIVER

It is well known that the signal to noise matio in all f - m syatem increases as the frequency deviation increases. Referring to the expression for deviation Δf it is obvous that a high oscillator frequency and low oscillator circuit capacitance are desirable. Fortunately these two are quite compatable. A frequency of approximately 100 megacycles was chosen as it made possible the use of a commercially available $f-\mathrm{m}$ receiver with only minor modifications and because using a much higher frequency would impose severe limitations on the geometry of the modulated oscillator circuit.

Fig. 1. Photograph of microdisphicement meter.
In $f-\mathrm{m}$ broadcasting it is standard practice to emphasize the high frequencies in the transmitter and to de-emphasize them correspondingly in the receiver. This made it necessary to modify the audiofrequency portion of the receiver to achieve flat frequency response. The de-emphasis network was removed and the entire andio amplifier was replaced by a resistance capacity coupled amplifier designed to reduce phase shift errors to a minimum.

RESPONSE

The freguency responsic and plase slift of the system were determined by "measuring" the sensitivity of a short expander bar of $A D P$ crystal having a resonance frequency of about 50 kc . From theoretical considerations the displacement of the encl of sucle a bar should be in plase with and proportional to the driving voltage for all frequencies up to at least 10 ke . Thus the phase shift was determined by measuring the phase angle between the crystal driving voltage and the f-m receiver output, and the freguency response was determined fron the ratio of receiver oulpmet to erystal voltage, Over the audiofrequency rathe the sensitivity is independent of frepuency widhin the limits of crror of measurement, about ± 1 percent, and the phase shift increases approximately proportional to freguency, indicating a tine delay of about 10 micro seconds. Thus complex vibratory wave forms are portrayed accurately in the cathode-ray oscillograph at the receiver output.
The use of the microdisplacement meter for examining complex vibration wave forms is illus-
trated in Fig, 3 which shows the displatement-time relationship of a "Bimorph" crystal with various degrees of mechanical damping applied at the drive point for "square wave" excitation. The resonance frequency of the mounted "Bimorph" was about 700 cycles and the fundamental frequency of the "square wave" driving voltage was 100 eycles. In the upper row the left hand trace shows the "square wave" driving voltage, the central trace slows the vibratory displacement for no external damping, and the right-hand trace slows the displacement for damping somewhat less than critical. In the lower figures the left-hand trace shows the displacement for approximately critical damping and the right-hand trace shows over clamping. It appears that some secondary resonance lins not been completely suppressed by the damping.

CONSTRUCTION

Figure 4 is a photograph of the microdisplacement meter. The magnetic circuit for the voice coil is mounted on a lathe cross slide arranged to provide vertical adjustment of the axis of the probe. The 100 megacyele oscillator is contained in the aluminum box carried by the magnetic structure, and the probe driving crystal is contained in a bos to the rear of the magnetic system. Additional lathe parts provide a table, adjustable in the horizontal

plane, on which may be motuted the device to be measured. A large twister "Bimorph" crystal is shown mounted in position in a ball-point type hoded permitting free viloration of all four crystal corners, the upper corner being in position in front of the probe for displacement measurements. The various parts of the displacement meter are mounted on a surface plate having "Lord" mounting feet for vibration isolation.
Figure 5 is a photngraph of the electronic equipment rack. The upper pane! is a mull detector. Next below is a two channel amplifier with phase shiffer for driving the probe erystal ind the test translucer. Near the center is the voice coil integrator-amplifier with plase shifter and below that is the $f-\mathrm{m}$ receiver. The tuning slaft of the receiver is belted to a servo motor through a gear reduction contained beliand the panel just below the receiver. The motor is actuated by iny positive or negative undalance voltage out of the receiver discriminator to retune the receiver to center frequency. This atomatic tuning system was built to keep the receiver tuned to the oscillator primarily during long time temperature runs on transducer sensitivity but has proved to be a great convenience in daily use of the instrument ats it permits readjustment of probe spacing without the necessity for returing.

CALIBRATION

Both the null method and the direct reading method of using the microdisplacement meter depend on calibration of the voice coil for information concerning the vilbatory displacement or velocity of the probe.
The voice coil calibration has been determined by four independent methods with excellent agreement.
One method called the static method, is based on the fact that in a moving coil system the ratio of voltage induced in the coil to the velocity of the coil causing that voltage to be induced is the same as the ratio of the blocked mechanical force developecd by the coil to the current passed through the coil to create that force:

$$
c / v=f / i
$$

The ration c / v is the voice coil sensitivity figure desirecl. It was determined by measuring j / i. The probe driving crystal was removed, and a fixed condenser plate was positioned close to the end of the probe. The f-m receiver with tuning motor disabled was tuned to the high frequency oscillator and the reading of the receiver tuning meter noted. A known force then was applied axially to the probe-voice coil assembly thus displacing it from its normal position and detuning the receiver, and then a metered clireet current was passed through the coil and adjusted to restore the probe and voice
coil to the original position as indicated by restoration of the $f-\mathrm{m}$ receiver tuning meter to its initial position. With this adjustment the suspension springs were not flexed so the externally applied force just equaled the force developed by the current in the coil. The ratio of chis applied force to the current read on the meter is the sensitivity.
The temperature coefficient of the microdisplacement meter calibration was measured by this methorl. The microdisplacement meter was installed in an oven and arrangements were made to apply and remove the known force by remote control. Over the range of 0 to $40^{\circ} \mathrm{C}$ the sensitivity varies less than $\pm \frac{1}{2}$ percent.

Another calibration method involved "measuring" the sensitivity of a large ADP crystal plate whose sensitivity also was calculated from the dimensions of the plate and basic piezoelectric constant for the crystal which are known with considerable accuracy. Two such plates lave been mounted in holders adapted for easy installation in measuring position and are used for frequent checks of the meter calibration.
A third method is illustrated in Fig. 6. The probe was replaced by a pair of parallel, insulated condenser plates. A gromaded shield plate was located between the two and arranged to be positioned by a micrometer screw so that either vibration of the pair of plates or adjustment of the shied plate by the micrometer changed the capacity between the two vibratory plates. The capacity between the plates formed one arm of a capacity bridge driven by a $100-\mathrm{ke}$ oscillator. The capacities between the shield and each plate are inclicated in dotied lines. One is across one fixed arm of the bridge and is swamped out by the large capacity of that arm. The other is across the bridge output and likewise is swamped out by the other capacities across the output. The bridge is adjusted nearly to balance and then a curve is plotted of micrometer screw adjustment is. d.c. voltage developed by the recti-

Fis, 6. Schematic diagram of "Static" a-m colibration setmp.
fier due to bridge unbalance. The rectifier circuit was designed to have equal d.c. and a.c. loats so that the slope of the static curve gives the sensitivity to relative motion of the condenser plates for vibratory motion as well as "static" displacement. Thus the slope of the curve together with the a.c. voltage output of the rectifier produced by an unknown amplitude of vibration of the voice coil may be combined to determine the amplitude of vilration.
The voice coil voltage is measured at the same time and the ratio of this to the vibratory displacement is the desirecl sensitivity figure. Actually, rather than measure separately the rectifier a.c. output and the integrated voice coil output, the two are balanced by means of the phase shifter and a calibrated attenuator in a manner analogous to the balance method of using the equipment. This method of calibration was the first one used and has been repeated a number of times throughout the life of the mierodisplacement meter. There is some indication of a gradual increase in sensitivity but the extremes differ by less than 2 percent.
The fourth method of calibration was the reciprocity method, following the technique of Trent. ${ }^{1}$
The four methols of calibration agree within ± 2 percent of the average value.
${ }^{1} \mathrm{H} . \mathrm{M}$. Trent, "The Absolute Calibration of Electromeclanical l'ickups," J. App. Mechanics 15, 49-52 (19:48).

Auditory Masking of Multiple Tones by Random Noise

Thlmmen Scharer and Rompr S. Gaies
Psycholosy Division, Nawy Eldctronics Laboratory, Stan Dieqn, California
(Recejved March 7. 19.10)

Abstract

One, two, four, and eight simple tomes were preseated to listuers anainat a background of thermat noise, The masked thresbolds for the single tones atsel the various conbinations were determined, far different spacings of the tontes. In the case of two tones, the improvernent in threshald with respect to a simgh tone was slight or megligible thlers the tomes were within one critical band, when the improvement increased as the spacing decreased. In the case of fout or ejght totes all sepatrated by more than a critical batm, the imgroveanent was slight (lesis than 3 do) or negligible, apparenty deperding on the combination of fremuencies.

INTRODUCTION

THE fact that aural detection of weak underwater sounds is ordinarily limited by masking has led the Psychophysics Section of the Navy Electronics Laboratory to conduct a continuing study in this field. Earlier work' by this gromp has shown that the masked threshold of most sigmals encountered in underwater listening can be prodicted from the spectra of the signal and the background noise, provided that the noise has a continuous spectrum, with no very steep slopes; i.e., un uegative slopes steeper than ibout $20 \mathrm{db} /$ octave.
To predict the nasked threshold one must know the signal and noise levels in suitably defined "critical bands." The critical band widths have been determined experimentally by H. Fletcher of the Bell Telephone Laboratories in masked. threshold experiments using bands of flat ratdom noise as masking background and a single pure tone in the middle of the band ats sigmal.,.7
As the band width of the noise is increased from a few c.p.s.s, the threshold intenaity (he intensity at which half of the signals presented are detected) increnses proportionally, up to a certain "critieal band width," then remains constant. The critical band widths determined in this way at various frequencies are shown by the simall circles in Fig. 1 (right-hand scale), Let us call the critical band width determined in this way $W_{1}(f)$.
For bands wider than approximately $W_{1}(f)$, it is found that the sigual is heard half of the time when its intensity is equal to the intensity of the noise in a band of width $W_{2}(f)$, regardless of the band width of the background noise. $W_{a}(f)$ has been called the kappa-band since it is defined by $\kappa=10 \log _{10} \mathrm{I}_{2}$. Values for x have leen publisherd in several BTL papers and have been used to give the values for W_{z} shown in Fig. 1 (black dots). According to

[^27]Fig. 1, $W_{1}(f)$ and $W_{s}(f)$ are experimentally almost equal. We will, therefore, henceforth use values for the critical band widths determinel by the W: data which is more precise. Furthermore, we will not distinguish between the bands W_{1} or W_{2} but will use the term critical hand to refer to both.
No statistical evidence of a significant discrepancy was presented by Fletcher, If it is assumed that they are in fact equal, it follows that not only is noise outside the critical band ineffective in masking a tone centered in the band, but the intensity of the just audible tone is equal to the intensity of the noise in the critical band, ${ }^{\text {s }}$ provided that the amount of masking lies in the rauge from alout 15 to 80 db , Since the noise spectrum is constant, the critical band width in c.p.s. is equal to the ratio of the signal intensity, for 50 percent detection, to the intensity of the noise in a 1 -c.p.s. hand. The corresponding differences in level, on the dib scale, are given by the left-hand seale in Fig. I.
Once the critical band width has been determined as a function of frequency, the masked threshold of a pate tone in moise of contimoons hut non-uniform spectrum can be predicted. The criterion is that the signal intensity must equal the intensity of the noise in the critical band centered at the signal frequency. In complex uuderwater sigmals, one single-Frequency component is usually so much stronger than the rest that the critical band criterion applied to this component gives at clear and unambiguous predietion of the masked threshold of the whole signal. The question arises, however, is there an improvement in recognition when two or more components of the sighal just satisfy the criterion separately? In particular, is therean improvement in recognition (a) when two pure tones are within the same critical band, (b) when two, four, or eight pure tones are all in different critical bands? It is these questions that the experiments reported here were designed to answer, over a limited range of frequency, intensity, and frequency relations.
-This definition is inmplied by the usage of N. R. Fremen and J. C. Steinberg, J. Acouss. Soe. Anl, 19,90 (i9:4), Fig. 7.

THE EXPERIMENTS

Five observers were seated in separate booths provided with hearphones and a voting key. Before each test they were given a chance to become accustomed to the masking noise. They were then given a practice period, in which they were instructed to vote whenever and as long as they heard the signal. As soon as the experimenter was satisfied that they were voting on the correct signal, the observers were told that the test was about to begin and that they shouk continue voting as instructed. During the test, the background noise was on continuously, and the signal was normally presented for 3 seconds and removed for 2 seconds. The only exception was the 5 -second presentation period used to reduce sampling error when the frequencies were mily 1 c.p,s. apart. On one-third of the presentation periods, no signal was presented at all. The observers were aware that there were blank presentation periods but did not know when they were to oecur. Errors of commission occurred at an average rate of less than one per observer per test, which indicates that guessing was not a serious factor. At the same time, competition between ohservers helped to keep them doing their best. The signals were presented at eight different levels, separated in most tests by 2 -flb steps, but in some by $1-\mathrm{db}$ steps.
To insure that all componeat tones would reach their respective masked thresholds at the same setting of the variable attemuator, preliminary tests were given to determine their separate thresholls. In 2-, t-, and 8 -tone tests, the levels of the signals were adjusted in accordance with the diresholds determined in the preliminary tests, then the signals were mixed electrically and the mixture was varied in level by known amounts to constitute the variable test stimulus. The tone mixture was then mixed with the background noise and presented to the listeners.
The order of presentation of the different levels seemed perfectly random to the observers, but was not completely random. It was thought desirable to make the same number of presentations at each tevel and also all possible successions of one level by another with no duplications, to avoid possible bias due to a preponderance of loud or soft items preceding Itents near Ulireshold, 0 To do this ic was necessary to adopt a systematic pattern. However, the levels were assigned to the elements of the pattern at random. No tendency to memorize the test sequences or to anticipate the following level from an item was noticed by any of the observers.
Figure 2 shows a block diagram of the apparatus.
*T, H, Schafer, "Influcuce of the preceding item in measurements of the noise-masked threshold by a modified constant
thethod" (to be publtshed in J. Vixper, Jsyehol.).

A closed loop of random noise on film wats played on a film reproducer, amplified, equalized and passed through a finc-adjustment attenmator and an isolating attenuator. Pure tones from eight HewletsPackard oseillators were mixed at controllable levels, then passed through a raudom condition selector, in which a punched tape controls the level of the presentation. A Conn chromatic st roboscope was used to set the frequencies aceurately to a precision of approximately 0.1 percent. The signal from the random condition selector passed through a signaltiming switcl controlled by a closed timing loop on a second film reprodicer. After passing through an isolating attenuator, the signal was mixed with the noise and the combination was passed through a $400-1600 \mathrm{c}$.p.s. band-pass filter, amplified, and fed to the headphones of the listeners and experimenter. The volume indicator across the output of the power amplifier was used to calibrate the signal and the noise before and after ench test.
Each test was 6 minutes long and included six presentations at each of the eight levels and 24 blanks. Only one type of signal was used in a test. The tests were given in groups designed to contrast, under as nearly the same conditions as possible, the response of the observers to diferent stimuli. The order of tests was random in a given replication of a group of tests, but the order was different each time and when the number of different signals was not too great, all orders were exhansted. The hendphones were matched carefully, but to minimize errors from this source each observer was assigned at random to every booth at some time during a series of replications of a test group. Five or six replications was the usual number.
Figure 3 slows the spectrum of the noise in terms of level in the critical bands shown by dots in Fig. 1 plotted in dh above the same origin as the average measured absolute auditory threshold of the listeners. The signals used ranged from 600 to 1500 c .p.s. In this range the noise spectrum is llat. The slight rise at the Jigh end in Fig. 3 is due to the widening of the critical band alsove 1000 c .p.s.

Fig. 1. Whe width of the critical band as a function of frequency, and the level of the noise in the critical band in th relative to the spectran level of the nosise

Fig. 2. Iflock diagram of the apparatus.

Some of the first tests were run with approximately 55 db of masking, some with approximately 15 db . There was no systematic difference in either the masked thresholds or the improvement in masked threshold with multiple tones, and extraneous nois: made the tests less precise, so the low level tests were dropped part way through the program.
Figure 4 shows some cathode-ray oscillograms of representative signals, increasing in complexity from the sine wave in the upper left to the complicated but almost periodic resultant of four nonintegrally related sine waves.
Figure 5 shows a transition curve (recognition probability as a (unction of level) for in 800 -c.p.s. tone and another for four tones between 600 and 1100 c.p.s. These are averaged over 5 ohservers and six tests, hence are very much smoother that is usually observed with a single observer's transition curve on a single test. However, all the transition curves are of this form, with all very loud signals being heard, and fewer and fewer being heard as the signal gets weaker, The 800-c.p.s. curve given here chacks Fletcher's work very closely; notice that 50 percent recognition takes place when the signal is approximately equal to the noise in a $40 \cdot \mathrm{c} . \mathrm{p}$ s. hand, the critical band at 800 c.ja.s. determined by Fletcher (Fig. 1, black dots). Notice also that the 50 percent level for the 4 -tone test is 3 db lower, indicating that for the group of 4 tones chosen, $603,751,851$, and 1103 c.p.s., the threshold intensity is not independent of the number of tones. Nor is it proportional to the number; for in that case, the 4 -tone eurve would be 6 db to the left of the single-tone curve, as the power in the resultant of waves of the same amplitude is 4 times that in a single wave.

DISCUSSION OF RESULTS FOR TWO TONES

Figure 6 shows the mean difference between an observer's threshold on a 1-tone test and a 2 -tone test taken within an hour. This will be called the moan improvement in threshold. The vertical hars cover the os percent contidence interval of the mean. That is, if the measurements could be repeated under the same conditions, the mean would lie between these limits in 98 percent of the samples. The 98 percent confidence limits are obtained as follows, let X be the mean improvement in threshold in in sample of N measurements, μ the mean improvement in threshold in the population of measurements represented by the sample, s the standard deviation of the improvenent in threshold in the sample, and N the number of data in the sample. Then X is distributed approximately normally about: μ, with standard error $\sigma_{m}=s /(N-1)$!.

From a table of deviations of the normal curve, it can be seen that for large samples ($N \geq 30$), the probability P that the sample mean of differs from the population mean μ by less than 2.33 stanchard errors is 98 percent. That is, $P\left(|X-\mu| \leq 2.33 \sigma_{m}\right)$ $=0.98$. The 98 percent confidence interval of the true mean is thas an interval $4.66 \sigma_{m}$ wide and contered at the sample mean.

For two tones 500 c.p.s., or about 10 eritical bands, apart, the threshold is not lowered significantly (Fig. 6), 'That is, the data are consistent with the hypothesis that the improvement in thereshold is zero. For two tones 414 c.p.s. apart, the threshold is lowered 1 to 2 db . It happens that the two tones used (603 and 1017 c.p.s.s) make a good major sixth, which is a smooth and easily recognizable musical interval; but not enough different intervals were studied to emable us to say that the musical character of the interval improves recognition. 'l"his is an interesting problem for future research. For two tomes 100 c.p.s. apart, that is, with one critical band intervening, the threshold is not lowered significantly. In view of the probably significant improvement for two tones 414 c.p.s. apart, it seems safest to conclude that the mean improvement with two tones separated by more than one critical band is from 0 to 2 db .

When the two tones are within one critical band, the threshold drops as the freduency difference decreases. The improvement appears to approach a maximum of 6 db as the beat frequency approaches zero and the maximum anplitucle approaches twice the amplitude of one of the components.

These observations can all be correlated by assuming that (1) the ear amalyzes the sound spectrum into a series of adjacent bands by some means amalogous to a series of band pass filters and (2) the ear responds to the "output" of one of the "filters" like a rectifier followed by a low pass filter. Neither
assumption is novel ; (1) is the ontcome of Fletcher's work on the masked threshold ${ }^{1,3}$ and (2) has been proposed by Nyquist' and Munson ${ }^{8}$ to account for the growth of auditory sensation.
There seems to be little theoretical reason for preferring any particular circuit for performing the functions of analysis, rectification and measurement; the tuned-secondary diode detector shown in Fig, 7 will serve. At the left, two e.m.f.'s differing in frequency by Δf but having the same amplitude E are fed to a transformer whose secondary is tuned to the mean frequency f. The secoudary is shown shunted by the equivalent parallel resistance of all the factors causing dissipation in the transformer. The maximum amplitude of the primary e.m.f. is $2 E$, occurring when the two signals are in plase. The maximum amplitude of the secondary e.m.f. is $2 E . x(a)$, where $a=Q \Delta f / 2 f$ is at function of the Q of the tuned circuit and the fractional dotuning of either of the signils. The factor Q is defined as $f /(n-m)$ where m and n are the frequencies at which the response is down 3 db . The factor $x(a)$ is the response of the tuned circuit relative to maximum, for different $Q s$ and different amounts of detuning. Its graph is called the tuiversal resonance curve. ${ }^{\text {P The output of the detector }}$ is the product of the applied e.m,f, $2 \operatorname{Er}(t)$, the detection efficiency, D (a constant depending on the ratio of load resistance to plate resistance), and a factor $y(R C, \Delta f)$ depending on the time constant $R C$ of the low pass filler and the separation of the signal frequencies, Δf.

To test the amalogy, the signal frequency pairs used were put through a rectifier and an $R C$ filter. The output was measured for each pair and several different time constants. The results are given in Table 1 , expressed as the number of d ib increases over, the response to a single tone, read to the nearest 0.5 clb . The results for different frequency spacings at a fixed time constant are olbtained from reading down the columns, The results for $R C=200$ milliseconds are also plotted on Fig. 6 as a series of small circles. They fit the data fairly well at 1, 3 and 10 c.p.s. separation but remain too high at greater separations. The difference of 0.8 db at 25 c.p.s. between the mean masking datat and the analogg data can be explained as a loss at the signal frequencies on the sloping sides of the critical biand filter. This interpretation makes it possible to compute the Q of the critical band filter, assuming a simple resonant circuit. For a loss of 0.8 dl , corresponding to $x(a)=0.91, a=0.21=12.5 Q / 800$. Hence $Q=1 . f$. A simple resonant circuit having a given Q will

[^28]hive a pass band to the half power points given by f / Q which, at $800 \mathrm{c} . \mathrm{p} . \mathrm{s}$. and for a Q of 14 , will equal $800 / 14=57$ c.p.s. This value is in fair agreement with Fletcher's determination of 40 or $50 \mathrm{e} . \mathrm{p}, \mathrm{s}$, for the critical band width in the vicinity of $800 \mathrm{c}, \mathrm{p} . \mathrm{s}$. That two toness separated by 100 c.p.s. will be resolved by the critical band filters is readily checked by computing the response of a resomant circuit of $Q=14$. If the circuit is considered tuned to f_{1} or f_{4} it will respond fully to its resonant frequency and attemate the other 10 did, If eonsidered tuned to the frequency midway between f_{1} and f_{2} each tone will be attenuated 5.5 db below the level of the single tone. In this case, even with the 6 -db increase at the peak of the beat cyele the maximum level will only be 0.5 db above that of a single tone.
No data are available at frequencies between 25 and $100 \mathrm{e} . \mathrm{p}$.s. Hence, it is not possible at present to check the value of 1 it computed for Q. However, with further work along this line it may be possible not only to determine a Q for the critical band filter on the assumption that it has the characteristic of a simple resonant circuit, but to determine the actual filter characteristic. The shape of the filter characteristic deduced will depend to some extent on the tine constant chosen for the integrating circuit, however.

RESULTS FOR MANY TONES

The improvement in threshold observed with more than 2 tones depends on the sets of tones used, so the sets used will be described briefly. The frequencies in each set are given in Fig, 8. In all sets all of the tones are in separate critical bands. A is a set of 4 tones used in the 2 -tone teats, The set forms a very pleasing and easily resognized chord, but one which is foreign to our system of harmony:

Fig. 3. The critical band spectrum of the noise in retation to the observers' average absolute anditory threshold.

Fig. A. Oscillograms of some teat siknalh,
13 is a diminished-seventh chord in 12 -tone equal temperament, chosen ats a typical smooth, inoffensive chord. C is a major-seventh chord, quite dissonant even with the pure tones used in this experiment. The tones used in D are separated successively by $200 \mathrm{c} . \mathrm{p} . \mathrm{s}$, , giving a rough $200 \mathrm{c} . \mathrm{c}$ p.s. beat note in the headphones. Fis a group of 8 tomes separated successively by 225 cents, an arbitany non-musical interval; and E is composed of altermate tones of F . Thus the sets of tones used form a rather fair sample of what could be constructed in the range of frequency studied.

In Fig. 8, the improvement in threshold (comparing the sets of tones with a single $800 \cdot \mathrm{c} . \mathrm{p}, \mathrm{s}$. tone) is plotted. The vertical bars cover the 98 percent confidence interval of the mean improvement for each set of tones.

The set of eight tones, F, shows a mean improvement of 0.8 d over a single tone and E , a group of four tones contained in F , shows a mean improvement of 1.2 dh. Referring to Fig, 6 , the mean improvement for 414 c.p.s., the difference in fre. quency between two tones that occur in both F and E is 1.5 db , so there appears to be a trend toward less improvement as the number of tones is increased. The trend is not established by the present dati, as the scatter of the data is too great.

FIg. 5. 'lypical transition curves.

However, the difference between the means of the improvement for 2 and 8 tones is significant at the 2 percent level. If the effect is real, it may be because the set of tones tembed to sound more like noise as more tones were added. This would not mecessarily be true of other sets of tomes; sets that can be heard as a unified auditory object, such as a chang or a chord, might not follow this trend.
The mean improvement in threshold with 4 tones varies from set to set by an amount that. would oceur by chance less than once in 1000 times. Even among the four relatively homogeneous sets taken with t-db RCS steps, the variation is almost significant at the 1 percent level.
Two hyjotheses that might be advanced to account for the observations on several tones are (1) that sets of tones that combine into a single meaningful atditory object are detected better in the midst of moise that others and (2) that "biting" anditory objects are detected better than "bland" ones. "Biting" and "bland" are used rather than "dissonant" and "consomant" becatuse no function in a musical system is considered necessary for autlitory objects to produce the results predieted on the lypothesis. The range of anditory objects is not even restricted to chords. The distinction is not alasolute, bat is represented in the present data by

Figs. 6. Improvement of threshold with the addition of it second toms.

Fig, 7. Circuit analog of the ent in one critical hand.
sets C and 13. Of course the distinction is not nearly' so convincing is if complex tontes were used.

The two hypotheses proposed above can only be considered starting points for further research; the data on hand merely suggest them.

The data decisively rule out the possibility that the effect of additional tones in separate critical bands is additive. They also seem to rule out the possibility that the tones entirely fail to reinforce each other. However, the observed improvement in threshold can be accounted for without abandoning the critical band hypothesis.

If several tones not in the same eritical band are presented at different levels with respeet to their thresholds and are detected independently with probability $p_{1} p_{2}, \cdots, p_{n}$, the probability P of detecting at least one is the complement of the probability of (etecting none, that is,

$$
P=1-\left[\left(1-p_{1}\right)\left(1-p_{2}\right) \cdots\left(1-p_{n}\right)\right] .
$$

When all the tones are at threshold, $P=1$ $-(0.5)^{n}$, which for two tones is 0.75 and for four tones is 0.94 . To determine the improvement in threshold, it is only neeessary to read the difference in level between the 75 percent and 94 percent points and the 50 percent point on the transition curve for a single tone (Fig. 5, right-hand curve). This is about $1,5 \mathrm{db}$ for two tones and 3 db for four tones. All the improvements in threshold shown in Fig. 6 (for frequency differences of 100,414 , and 500 c.p.s.) and Fig, 8 are within these limits.

Thus the improvement in threshold observed with several tones might be attributable to the

Fic. 8. Improventent of threshold with some combinations of 4 and 8 tones.

Tantes. The response of a rectifier and low pass $K C$ filter to a pair of frequencies.

Jf(c.p,x,)	Ithatove respmane to aingle fromuticy					
	Jime constan, $R C$ ($\mu \mathrm{sec}$.					
	5	20	50	75	100	200
1	6	6	6	5.5	5.5	4.5
3	6	6	5.5	5	5	4
10	6	5	4	3.5	3.5	2.5
25	5,5	3.5	3	3	3	2.5
100	4	3	2.5	2.5	2.5	2.5

increased opportunity for detection, rather than to some mutail reinforcencut of the tones in the auditory pathway's. 'This interpretation is not inconsistent with the reported experience of the listeners. Another factor which might explain the olserved threshold improvement in part is the possibility that the tones did not all come to threshold preciscly at in $R C S$ setting. At any rate, the variation in threshold improvement between sets of tones, white an intriguing subject for future research, is not large. It can be said with considerable assurance that the improvement in threshold with four tones is between 0 and 3 db .

CONCLIUSIONS

As a result of this work, we conclude that in the frequency region from 600 to 1550 e.p.s.:
(1) As the frequency difference between two tones adjusted in amplitude to subjective equality decreases from well over one critical band to i c.p.s., the noise-masked threshodel decteases almost 5 db , from a value approximately equal to the singletone threshold.
(2) This improvement in recognition is to be expected from a system having the ability to analyze the sound spectrum into frequency bands and requiring an appreciable time for the growth of auditory sensation. The data can be approximately fitted by assmming that an amalyger element of the ear acts like a tuned circuit with a Q of 14 followed by a rectifier and a low pass filter with a time constant of 0.2 second.
(3) For 2 tones separated by more than 1 critical band the threshoid is probably from 0 to 2 db lower than the single-tone threshold.
(4) For 4 or 8 tones, adjusted in amplitude to subjective equality and all separated by more than 1 critical biatl, the threshold is probably from 0 to 3 db lower than the single-tone threshold,
(5) Significant but small changes accompany changes in the frequencies used, the observers, and details of testing. The effects of these variables cannot be determined withont further extensive testing, but it is suspected that the differences in improvement in threshold observed are related to the ability of the observers to perceive the com-
bimation of frequencies as a meaningful configuration, sucla as a chord or a clang.
(6) There is no stendy decrense in the masked threshold as the mumber of tones in separate critical bands increases. In fact there is probably an increase, at least with some combinations of frequencies.
(7) In predicting the masked threshold from complex sigual and background noise spectra, the presence of multiple disercte components in separate critical batds in the signal spectrum does not require modifying the critical band criterion for determining the masked threshold. When multiple
components lie within one critical band, their resultant has a higher maximum amplitude than any one component, The critical band criterion cannot be applied directly to the maximum amplitude, however; the effective amplitude is luss because of the appreciable time required for the growth of auditory sensation.

ACKNOWLEDGMENT

This research was done at the Navy Electronics Laboratory, San Diego, California, All members of the Psychology Division conperated.

THE JOURNAL OF THE ACOUSTICAB SDCIETY OF AMERICA
VOI.UMI: 29, NUMBER 4
JULY, 10.5

The Loudness and Loudness Matching of Short Tones*
 W. R. Garnirr
 Psychological Laboratory, The Johns Itopkins University, Baltimore, Maryland

 (Received March 20, 19.4\%)A monaural loudness matching technique was insed to study diferential sensitivity to intensity as a function of tonat duration. The probable error (p, e.) of the loutness matchus was used as the measure of diffurential sensitivity. With one lechnique, ia standard tone of 500 milliseconds duration was followed by a tone of variable duration ($10-500$ milliseconds) after a silent interval of 50,100 , or 500 milliseconds. In another technigute, both standard and comparison tones were of the same duration ($10-500$ milliseconds) with the same silent intervals between tones as bufore. (I) When the standard tone was always 500 mitliseconds, the p.e. of the loudness matelats increased wilh a decreatie in the daration of the comparison tone from approximately 0,60 to $2,30 \mathrm{dh}$, and the length of the silent interval had no uffect on the function, (2) When both the standiret and comparisoa tones hacl the same duration, the p.e again increased with a decrease in

INTRODUCTION

MANY different tecluiques have been used to measure the difference threshold for the intensity of tones, and these many techniques have produced different estinnates of the size of the difference limen. Montgomery, for example, has shown that the difference limen (mensured in decibels) can vary by a factor of four when the experimental procedure is changed. The experimenter who measures clifierential sensitivity must determine which of the psychophysical methods he shall use, whether the observer has any control over the presentation, whether the two tones shall have an interval of silence between them, and

[^29]duration; in this case, however, a silent interval of 500 mitlisecomls cimsed an increase from approximately 0.60 to 2.50 dh while a silent interval of 50 milliseconds cansed an increase to only 1.00 d . These differences are explinimed in terms of two different procesices: a dissimilarity effect, and an imferforence effect. (3) When a stimnard tone of constant deration is used to obsain loudness matehes, the mean of the mathes hecomes a meastre of the loudness of tones as a function of duration. These meatures showed a clear disthection between the six observers used. For three observers, the change in duration caused practically no change in loudness. For the other three, chamges in louchess as great as 8.5 db were recorded, This order of lotedness clange agrees with that reported by tekesy, but is considerably lews thatu that reported by Munson. Possible explanations for the differences are mentianed.
whether the comparison tone should isoth increase atud decrease in intensity relative to the standard. A change in any one of these factors, and others not mentioned here, is apt to change the size of the difference limen he measures.

When differential sensitivity is measured as a function of tomal duration, there are additional complications. A change in the experimental conditions can affect not only the absolute size of the limen, but also the shape and magnitude of the function obtained. Furthermore, another experimental problem arises: should the standard tone have a constant duration and the variable tone change in duration, or should both standard and comparison tone always have the same duration?

PURPOSE OF EXPERIMENTS
The primary purpose of these experiments was to investigate the relation between tonal cluration and differential sensitivity to intensity with different
methods of tomal presentation. In the investigation we have used a method in which the observer monaurally matches two tones in loudness. With this technique, the probable error of the erpality matehes becomes the measure of the difference limen, since it indicates the degree of precision with which the equality mitches ate mate. Different silent intervals between the standard and comparison tone have been used, with two basic types of presentation. In one type of presentation, the standard tone always las the same duration, regardless of the duration of the comparison tone; and in the other tyje, both tones have the same duration at all times.

When a method of loudness matching is used as we have used it, the mean of all the erpality judgments is a measure of the relative loudness of the two tones. When the standard tone is kept at a constant duration as the variable tone is changed in duration, the muan equality judgments are then measures of the loudness as a function of duration. This functional relation, then, is a secondary purpose of these experiments-one which is inportant because of the existing disagreement concerning the magnitude of the effect of duration on loudness.

PROCEDURE
 Conditions

The conditions used in these experiments are sclematically illustrated in Fig. 1. Under one condition, the first (or standard) tone was always 500 milliseconds in duration, and was followed by the comparison tone which varied in duration from 10 to 500 milliseconds. The interval between the first: and second tone was cither 50,100 , or 500 milliseconds. The second basic condition was identical except that the first: tone always had the same duration as the second tone. In both conditions, the tones were presented once every four seconds. A $1000 \mathrm{c}, \mathrm{p}, \mathrm{s}$. tone was used at all times.

Observers

The observers were six male college students, experienced in auditory research. Que observer at a time was seated in a solnd-dendened room to make observations for an bour at a time, and no longer that two hotrs in any one day. He was provided with an attenuator calibuted in $1-d b$ steps which controlled the intensity of the first tone. He adjusted his attennator until both tones sounded equally loud, and then called hisattenuation score to the experimenter in an adjacent room by means of an intercom system. The observer's attenuator had a total range of 45 db , but its reading had no meaning to him, since the experimenter added and subtracted attentation at ran-

Fro, i. A schematic illustration of the two basic conditions used in these experiments. See text for further explination.
dom. Each olserver made a total of ten loudness matches for each condition, but the experiments were so planned that no two observations for the same conditions were made in the same session. This procedure slightty increases variability of judgments, but prevents iny systematic indluences such as habituation, learning, ctc.

Measures Used

The mensure of the difference limen (or varinbility) is the probalile crror (p.e.) of the judgments. The p.e. was obtained by averaging the variances (standard deviations squared) of each observer's scores for a particular coudition, adjusting the variance for degrees of freedom, and then computing the p.e. from this average variance. Thus the measure of the diference limen is taken with reference to the mean of the observer's judgments, not with respect to physical equality. This procedure is necessary, of course, when there are large differences between subjective equality and physical equality, such as when the standard tone is longer in duration than the comparison tone. Under most conditions, the mean scores for the different observers represent random variation. Thus this procedure does not decrense the size of the difference limen because it has already been increased by adjusting it for degrees of freedom.
Measures of loudness of tones are simply the mean score (in (b) of all the eppuality judgments.

apparatus

The apparatus used in these experiments is basically the same as that used previously, ${ }^{2}$ and a brief description here will suffice. The output of a Hewlit-Parknrel ossillator was fed to an electronic timer which provided all the time relations used. Both tones began and ended abruptly, and no later filtering was used to change the transient characteristics. The two tones from the timer were kept separate for purposes of differential attenuation, and then mixed in a resistive network, amplified and fed to a single PDR-8 earplane (mounted in a doughmut cushion) for monaural listening. All

[^30] J. Acous. Soc. Am. 20, 513-527 (1948).

Fig. 2. The effect of tone daration on differential sensitivity for intensity when the first (standard) tone always has a duration of 500 milliseconds, The ruference inensity leere, and for other intensity levels, is 0.0002 dyne/cm ${ }^{2}$.
apparatus except the carphone and the observer's attenuator was ontside the sound-deadened room.

Intensity levels were determined by measuring voltages across the earphone with a vachum-tube voltmeter and referring to the calibration curves for the earphone which had been provided by the Permoflux Company. Special calibration circuits, in conjunction with a Standard Electric clock calibrated in $1 / 100$ second, were used to measure the various times. An exception to this procedure was made when very short durations were used, in which case the number of cycles of a $1000 \mathrm{c}, \mathrm{p}, \mathrm{s}$. tone were counted on an oscilloscope.

RESULTS AND DISCUSSION
 Difference Limens

The rest of the paper is divided into two sections. This section is concerned with measures of differential sensitivity, and a later section will treat the problem of loudness.

First tone constant duration. Figure 2 shows the effect of tone duration on the difference limen when the first tone always has a duration of 500 milliseconds, and the second tone is variable as indicated on the abscissa of the graph. The intensity level for these measurements was 80 db . In general, the difference limen (DL) as measured by the p.e. of the loudness matehes increases as the duration of the comparison tone decreases, especially below 200 milliseconds. This relation is not basically different from that obtained previously by Garner and Miller, ${ }^{\text {a }}$ although the technique used by those atrthors was quite different from the present teelnique. The absolute size of the DL, however, is considerably greater in these measures than in the previous oncs.

JW. R. Garner aud G. A. Milher, "Differential sensitivity' to intensity as a function of the duration of the comparison tone," J. Exper, Dsychol. 34, $150-163$ (1944).

Fifi, 3. The effect of tune duration on differential sensitivity for intensity when the first (standaril) tone always blas a duthtion of 500 mitliseconts, at two different intensity levels. Each plotted point is the average of data obtained with three different silent intervalds hetween tones.

Aldough some scatter in the ploticed points is produced by differences in the interval between the two tones, luere is no consistent effect of the interval, and we have drawn a single curve which provides the best visual fit of all the points.

Effect of intensity. The same conditions which were used for the data of Fig. 2 were used at a lower intensity level. Again the size of the interval between the tones lad no consistent effect on either the shapue of the function or the size of the DL, so that it seemed legitimate to draw one curve for all three intervals. Figure 3 compares the average curves for the two different intensity levels. At the longer durations, the DL is considerably smaller for the higher intensity, although the DL's are essentially the same at the very short durations. The proportional difference in the DL at the longer durations is in good agreement with the data of Res., ${ }^{4}$ but is in poor agreement with those of Kinudsen, ${ }^{6}$ which show very litule change in differential sensitivity over the range of intensities used in this axperiment, It is not clear why this difference should exist.

Both tones same duration. Figure 4 shows how differential sensitivity is affected by tonal duration when both the standard and comparison tones have the same duration. Unlike the previous situation, we now find that the size of the interval between the tones has a marked effect on the shape of the function and on the size of the DSL at the shorter durations. When the interval is short (50 milliseconds), the function is approximately the same as it was when the first tone had a constant: cluration. When the interval is long, however, differential sensitivity changes very slightly as the dura-

[^31]tion is decreased. In fact, at 10 millisecomels the DL is only 1.7 times as great as it is at 500 milliseconds as compared to an incerease by a factor of 4.2 with an interval of 50 milliseconds.

In a previous paper, ${ }^{\text {a }}$ the effect of duration on interaural loudness mateling was studied when the two tones were presented to the two ears simultaneously. Under those conditions, it was likewise found that duration has relatively little effeet on differential sensitivity. But there was another similarity between the functions oltained under those conditions and the functions obtained bere when both tones have the same duration, In both cases, the maximum variability in loudness matching oceurs with a duration of 20 milliseconds. It would seem, then, that some similar factor is operating in the two conditions. The maximum variability at 20 milliseconds is probably due to the fact that it is the critical duration for tonality. At shorter clurations, a definite click is heard, while at longer durations, a clear tone is heard.
Comparison of conditions. We can summarize these resultes as follows. In monaural listening, if the standard tone is of a long constant duration, differential sensitivity markedly decrenses as the duration of the comparison tone is decreased, regardless of the interval between the two tones. Likewise, if both standard and comparison tones have the same duration, with a short interval between tones, differential sensitivity decreases with a decrease in duration. On the other hand, when both standard and comparison tones have the same duration (again with monaural listening). but with a long interval between tones, the effert of duration on differential sensitivity is relatively small. And similarly in interaural comparisons, the effect of duration on differential sensitivity is small when both tones have the same duration and are presented simultancously.

The best way to explain these results is to assume that there are two different factors operating to produce the decreased differential sensitivity when the duration of the tone is decreased. One of these factors we can call a dissimilarity factor, and the other an interference factor.
It is generally recognized that minimum difference limens are obtained when the two tones being compared are identical in all respects except thath. aspect for which differential sensitivity is being measured. If two tones of two different frequencies are used to obtain measures of differential sensitivity to intensity, for example, the sensitivity to differences is less than if both tones have the same frequency. When the standard tone is kept at a constant duration, and the comparison tone is
-W, R, Gavorer, "Accuracy of binaural loudness matehing
with repeated short tones,"]. Expor, J'syctsol, 37, 337-350 with repeated short tones," $]$. Exper, Psoychol. $37,337-350$
(19.47).
decreased in duration, the two tones become lessis similar, particularly when the duration of the comparison tone is so short that the tone is heard as a click. Under these conditions, then, we would expect that differential sensitivity woudd decrease as the comparison tone becomes shorter, and that is exactly what happens. 'The decreased sensitivity' is due to the fact that the cones become less and less similar.
On the other hand, when both tones have the same duration (in cither monaural or interaural comparisons) they are the same in all respects except that of intensity, and we woukd expect a minimum effect of duration on differential sensitivity. We get a minimum elfect of duration in interaural comparisons, and in monatural comparisons when the two tones are separated sufficiently in time. When, however, both tones are close together in time with nomaural comparisons, we again get a marked effect of duration of the difference limen. This effect we must attribute to an interference of the two tones on each other-an interference which is due to some continued response to the first tone over the period in which the second tone appears. After a period of time the response to the first tone disappears, and we thus get no effect of duration on diferential sensitivity.
We would expect the maximum interference to occur with simultancous presentation of the two tones, which is the condition achieved with the interaural comparisons. Since there was very little effect of duration on the interaural judgment, it seems likely that the interference is relatively peripheral-certainly not occurring as high in the nervous system at the point where the interaural judgment is made, Actually, the critical experiment to determine the locus of the interference would be to use interaural comparisons, but with the twotones separated by a short time interval.
Absotute size of the difference limen. The use of the probable error as the measure of differential

Fig. 4. The effect of tone duration on differential sensitivity for inteasity when both the standard and comparison toness have the sarme duration.
sensitivity should be equivalent to the limen as mensured with other techmiques. It is the value which encompasses 50 percent of the equality juelgments, and thus is that value which we can is sume would procluce 50 percent higher or lower judgments and 50 percent equality judgments. In the present experinents, tones of 500 milliseconds lave been compared a total of seven times. The average difference limen obtained was 0.60 db , which compares not too unfavorably with the more recent values reported in the literature. Values reported by Knudsen, ${ }^{5}$ Riesa, ${ }^{4}$ and Chureler, King and Davies for equivalent condtitions are on the order of 0.40 d . Postman ${ }^{8}$ reports a value close to $0,70 \mathrm{clb}$, which is slightly higher than that obtained by us, while Dimmick and Olson" report values considerably higher, It would seem fair to say, then, that the values obtained in these experimeats are not ont of line with previonsly obtained values, even though the method used is different from other methods in many respects.
Other effects of intervel. Montgomery' states that the minimum difference limen is obtaned when the interval between the two tones is zero. We ohtained data for a zero interval with both tomes having a duration of 500 milliseconds, and ohtained a differ ence limen of 0.45 db , which is lower than any of the other limens olbtained. 'Thus Montgomery's statement seems to be justified. Other that thisone effect however, none of the other differences in differential sensitivity due to the size of the interval is statistically significant, in arrement: with results ohtained by Harris and Myers ${ }^{10}$ for noise. Postman, ${ }^{8}$ likewise, found little or no effect of interval on the difference limen for the intensity of tones, although his dita encompass much greater time interyals than ours.

We obtained no functions with a zero interval between tones because such a function becomes meaniugless at the very short durations. In preliminary experiments, attempts were made to obtain data for a zero interval at short durations, and it was eviclent that judgments under those conditions are impossible. When no time separates the first and second tone with durations of $20 \mathrm{milli}-$ seconds, for example, it is impossible to tell which tone came first. Any judgment made becomes one of adjusting to a getessed total loudness, and is completely meaningless in terms of differential sensitivity.

[^32]Effed of repetition rate, Additionad data were collecter to determine if the rate at: which the tones were repented had any serious effect on differential sensitivity. The slowest mate used was once in four seconds (the rate for all data shown here), and the fastest rate was five times a secomb, which could be used only for some of the shorter dutations and intervals. Over this mage of rates there was no consistent or reliable effect of the rate on differential sensitivity.

Time errors. Whenever both the standard and the comparison tone are of the same duration, the mean of all the equality matches can be used as a measure of time error. At long durations, the mean differences obtained were always small, and in all cases except one were statistically insignificant (at the one percent level). Even if we assumed that the differences obtained were all significant, there would be no justification for talling about a time eiror function, since no consistent trends were evident in any of the data.

Loudness as a Function of Duration

It this experiment, the observer adjusted the intensity of the standard (first) tone to give a loudness equal to that of the second tone. Since the frequency was always 1000 c.p.s., the intensity level of the first tone directly becomes the loudness level of the second (variable duration) tone.

Differences betaeen observers. In plotting the datin to show the effect of duration on loudness, it was immediately apparent that the observers fell into two distinct groups-one of which showed a consistent change in fondness as a function of duration, and the other of which showed practically no change in loudness as a function of duration. Three observers fell into each gronp, and were in the same group for all conditions. In other words, the obsservers were consistent in either showing an effect or not showing an effect.

Figure 5 shows the effect of claration on loudness for these two groups at the two intensity levels used. Athough the difference between the two groups is less at the lower intensity, the difference is still clear. We can see no possibility that differences in experimental procedure conld have produced the differences shown here between the observers. All observers were given the same instructions, ind no olserver ever knew the results of his observations, Likewise, since the experimenter added or subtracted atemuation at random, it was impossible for the observer to know how close he was to plysical equality in making his judgments. In addition, there were no differences between the two groups in variability of loudness matches. The size of the silent interval had very litele effect on any of the loudness equalities, for either group of
observers-the maximum difference was about 1 db in favor of less loudiness for the longest interval.

Comparison with other resullf. If we assimme that -results from those observers who showed a change in loudness with cluration represent the true function, there is still a large discrepancy between outr results and those of Munson. ${ }^{14}$ For example, at an intensity level of 80 db , our results show that a tone of 10 milliseconds duration has a loudness level only 8.5 db less, In contrast, the data of Munson show it loudness level difference of close to 30 db under similar conditions. The maximum difference in loudness level for any one of our observers, under any condition, was 12 db , as compared to the considerably larger average differences of Munson.
In a previous paper, ${ }^{2}$ we investigated the loudness of repeated short tones, and found the effect of both duration and repetition rate on loudness. The loudness differences as a function of duration reported in that paper were equivalent to those reported here, but at that time we assumed that the discrepancy between our results and those of Munson was due to the fact that the lowest repetition rate used was five per second. In view of the present results, it must be assumed that there is a fundamental discrepancy between results-a discrepancy which needs some explanation.

In 1920, Bekesy ${ }^{12}$ reported data on the effect of duration on the loudness of tones. His results (for similar, but not identical, conditions) agree very closely with the results reported here for the three observers who showed the greatest effect. Thus the results of the present paper agree witho our previous results and with the results of Bekesy, but disagree markedly with the resuits of Munson.
Passible explanations of differences. Two possible explanations of the discrepancy can be mentioned. The first is that of methodology. Munson used a method of constants, in which the comparison stimuli had fixed and predetermined intensities, With such a method, it is possible that the results are affected by the selection of the intensities which the observer hears. Mr. J. M. Doughty is at present doing experiments in this laboratory which indicate that the equal loudness point can be strongly af-

[^33]

Fig. 5. The effect of tone duration on loudness, at wo intensity levels, for two different gromps of obldervers. Finch plofted point is the average of data obtained with threse plifferent silent intervals between tonts.
fected by changing the range and absoltate values of the comparison stimuli.

The other explanation-one which needs to be investigated-is in terms of the kind of onset of the tones. In all our experiments the tones had an abrupt onset, which produces many transient frequencies, Bekesy likewise used an abrupt onset. In Munson's experiment, however, the tones rose from zero to maximum amplitude in 3 milliseconds, which gives a tone with considerable less click at the begiming and end of the tone. At durations as short as 10 milliseconds, this difference in presentation of tones could certainly have some differential effect, although a difference as large as actually oceurs seems unikely. It seems even more unlikely that this procedural difference could account for the discrepancy in results at durations as long as 100 milliseconds.
It seems appropriate to say at this point that more research needs to be undertaken to rectify these discrepancies.

ACKNOWLI:DGMENT

Mr. Harold Schapiro and Mrs, Mary Lamb helped obtain the experimental data, and their contributions are acknowlelged wilh gratitude.

A Study of the Mechanism of the Middle Ear
 Yutaki Onclil
 Insitute of Ola-Khimo-Larryngolegy, School of Medicine, Tokyo University, Tokyo, Japan

Istudied principally the mechanics of the middle tar, summarizing the anatony and the physiology of the ear. I mate Diagram I showing the anatonical structure of the ear, and translaterl it into physical terms of Diagrum II, such ns mase, suring, and frictional constan, etc. Thereafter I coull get equathons showing the mechanics of the midfle ear through the Lagraugian equation. The complicated treatmeat for the kinetic, potential, and dissijnation energies of the middlle ear elentents is for the purpose of expressing my opiaton about the function of the midedle ear which is parily dififerent from the present contradictory metical views. By using the resultant equations of the notion of the ear ame Diagram Ift (showing the electronsechanical structure of the middte ear), 1 studied the mechanism of the middele ear under an assumption that the frequency characteristic curve of the inmer ear is flat in a wide range. This assumption may be deluced from Lascher's experiment of the ympanic loading anel hearing curves of men with complete defect of the tympanic membrane but with cochear nerve intact. However, I do not explain it here, nul it will he described in detail in further papers. Prom theoretical results thus
ohtained I made some experiments and calculation of the matural frequencies of the maldite car elements.
My conclusions are as follows: (a) Thou nir viluration system of the ear which consists of the external numbitory camal, the tymparic cavity, nual the antruan can he shown electromechanically by Diagram III. (h) The middle ear has four main peaks of resonance on the hearing curves. (c) The mikdile ear anci cochlea appear to be regarded ats a displacentent receiver and a pressure receiver, resjectively. (d) The tynanaic membrance has two innportant rodes; (1) that of composing the vibration of the external atulitory canala, of the antrum, and of the nir cells of the mastoid process; nud (2) that of propagating these vibrations to the ossicles. (e) The non-linear viloration of the tympanic membrame, the hasilar memhrame, and the secondary tympanic membrane, produce combination tones. (f) The air vilration system has an imporlant role in understanting speech sounds. Its mangification of the sound intensity is above 50 the in a range from 700 or 800 cycles 10500 cycles is in Fif. 5is. (g) This work offers a prollem of design of a new audiometer, and is avaiable for diagansis of otological pathology.

THE so-called Helmholtz theory of hearing, or some modification of it, and others attempted to explain, so far as possible, how the recognized sensations of sound are evoked by stimulation of the ear with sound waves, but they were not successful. On the contrary, modern acoustics and acoustical instruments made a great advance supported by radio technology. It became necessary for even radio technology to investigate the function of the ear as an important problem, because the human ear is the foremost of all receivers of sound. Consequently, the exact function of the ear became of intense interest to physicists as well as otologists. Many important experiments which aim to throw light upon the mechanism of hearing have been performed by pliysicists. However, the status of our knowledge of the mechanism of hearing may not be satisfactorily applicable in practice in spite of its considerable knowledge.

In my opinion, his means a lack of intimate knowledge between otologists and physicists.

It is hard work for otologists to understand the higher mechanics; however, we otologists must do so in order to make an advance in otology. Theretore, there must be a fundamental mechanics of hearing common to otologists and physicists, and applicable in practice.
I found such a fundamental mechanics of hearing, summarizing the anatomy and the plysiology of the ear from the standpoint of plysics.

diagram I

Diagram I is an anatomical diagram of the car showing the mechanism of hearing. The cochlear labyrinth is surrounded by many air cells of the mastoid process. These air cells have the important role of reflecting on
their surface the heart sounds carried by the arteries. The normal rellection coefficient of the air cells is calculated by measuring the impedance of bone and air.

$$
r^{2}=\left(R_{1}-R_{2}\right)^{2} /\left(R_{1}+R_{2}\right)^{2},
$$

where $R_{1}=42$ (the impedance of nir), $R_{2}=83 \times 10^{\prime}$ (the impedance of bone), and $r^{2}=$ the normal reflection coefficient of the air cells. I could not, however, find the value of bone impedance in any table of physics, In $19+13$, as a result of experiments into the method of which I shall not go at this time, I arrived at 8.3×10^{4} c.g.s, as the value of bone impedance, $r=0.999 \cdots$. The percentage of reflex is. 99.9 percent; i.e,, almost all of the heart sounds which the bone structure propagates from the carotis to the cochlear labyrinth are reflected on the surfice of the air cells.
Part of the sounds, however, are admitted through the bone partitions separating the many air cells. Due to this, the actunl value of reflex on the suriace of the air cells is estimated at 25 db which I have deduced from a study of Harvey Fleteher's experiments in binaural "objective" beats.
The ear has two axes of rotation. One axis, the malleoincudal rotation axis (11), consists of the process anterior Folii et ligamentum matlei anterius and the short process of the incus. Amother axis is behind the posterior pole of the foot plate of the stapes (15).
I consider the combined heads of the malleus and incus to be a sort of counterpoise. This is illustrated by the fact that the weight of two parts, which are obtained by cutting the ossicles in the direction of the ligamentum mallei anterior and the under edge of the short process of the incus is equal. In other words, the moment of inertia of the ossicles is at its lowest value, The equation explaining this fact, from the standpoint
of mechanics, is $I_{L}=I_{G}+A d^{2}$, where G is at line which passes through the centroid of a solid whose mass is $M /$, C is a line parallel to G, and the distance between K and G is $d . I_{d}$ is the monent of inertia with respect to I. axis, and I_{G} is the moment of inertia with respect to G axis. I_{l} will be at its smallest value when $d=0$. The incudostapedial joint (14) functions as a sort of universal joint. The secondary tympanic membrane (18) is π thin membrane which reduces the impedance of vibration of the cochlear fluid. For instance, in the case of otosclerosis, this membrane becomes rigid; i.e., it means that the impedance of its vibration increases extremely, I consider this to be an explanation of the results of the fenestration operation by Maurice Sourdille.

The difference between the impedance of air and that of liquid is too great, and results in a reflex of sound waves at the boundary of the two media. In order to prevent the reflex of sounds we must insert a transformer between the two media. In other words, the vibration system of the middle ear acts as a sort of transformer of the sound waves between the air and the cochlear fluid. I consider, however, that the difference of impedance between the cochlear fluid and air would be less than that letween a large mass of liquid and air, simply because of the extremely small quantity of the cochlear fluid.
The vibration of the stapes is a hinge-like movement which has its axis of rotation behind its posterior pole.
The stapedius muscle (20) pulls the anterior pole of the stapes outward, while the tensor tympani muscle (19) pushes the pole inward, through the incudostapedial joint. The restalt of this is that the two muscles act as antagonists and maintain the ossicles in the neutral position of vibration. The nqueducts (23) ant (24) linve the role of maintaining the normal pressure of the cochlear fluid. The cellullae hypotympanicae (8) and the other small cells in the tympanic cavity may be considered as suppliers which add air viscosity in their cells to the vibration of the tympanic membrane. Thus, I have explained in outline, by use of Diagram I the functions of the various parts of the ear.

DIAGRAM II

I observed the viluration of the tympanic membrane by introducing the light of a stroboscope into the normal ear. Its vibration has its largest amplitude in the middle zone of the tympanic membrane. The amplitude of the vibration of the malleus is much smaller than that of the middle zone so that I could not exactly determine the ratio between the two amplitudes. However, owing to this fact, I was able to translate Diagram I into Diagram II.
$\left.T=\frac{1}{3} M_{G} \dot{x}_{G^{2}}{ }^{2}+\frac{1}{2} M_{T} \dot{x}_{T^{2}}+\right\} M_{1} \dot{x}_{1}{ }^{2}+\frac{1}{2} M_{I_{2}} \dot{x}_{2}{ }^{2}+\cdots$

$$
+\frac{1}{2} I_{\kappa} \theta_{K} \kappa^{2}+\frac{1}{2} I_{S} \theta_{S}^{2}+\frac{1}{2} M_{C} x_{c^{2}}
$$

where

$\dot{x}=d x / d t ; \quad \dot{x}=d^{2} x / d t ; \theta=d \theta / d t ; \quad \hat{\theta}=d^{y} \theta / d l^{2} ; \quad t$ is time.

As a result of my experiments on the normal tympanic membrane, I have been able to observe its nonlinear vibrations, These observations, together with the result which Sclaeffer published as at result of his clinical experience, have led me to believe the vibration of the basilar membrane and that the secondary tympanic membrane are, like that of the tympanic membrane, non-linear. $V=$ the potential energy of the vibration system of the ear.

$$
\begin{aligned}
& V=\frac{1}{2} S_{O}\left(x_{a}-x_{T}\right)^{2}+\alpha \int\left(x_{a}-x_{r}\right)^{2} d\left(x_{a}-x_{T}\right) \\
& +1 S_{T}\left(x_{T}-l_{1} \theta_{K}\right)^{n}+\beta \int\left(x_{T}-l_{1} \theta_{K}\right)^{2} d\left(x_{T}-l_{1} \theta_{K}\right) \\
& +\frac{1}{2} S_{1}\left(x_{T}-x_{1}\right)^{2}+\gamma \int\left(x_{T}-x_{1}\right)^{2} d\left(x_{T}-x_{1}\right) \\
& +\frac{1}{2} S_{1}\left(x_{1}-x_{3}\right)^{2}+1-\frac{1}{2} S_{2}\left(x_{2}-x_{3}\right) \cdots \\
& +\frac{1}{2} \frac{T_{L}}{l_{L}}\left(l_{3} \theta_{K}\right)^{3}+\frac{S_{L}}{2 l_{L}{ }^{3}} \int\left(l_{3} \theta_{K}\right) d\left(l_{3} \theta_{K}\right) \\
& +\frac{1}{2} S_{11}\left(l_{4} \theta_{K}\right)^{2}+\frac{1}{2} S_{S}\left(r_{1} \sin \varphi \cdot \theta_{S}\right)^{2} \\
& +\frac{1}{2} \frac{T_{v}}{l_{v}} x_{s}+\frac{S_{v}}{2 l_{r^{3}}} \int x_{s^{3}} d x_{s} \\
& +\frac{1}{3} S_{u} x_{c}^{2}+\delta \int x_{G} d x_{c}+\frac{1}{} S_{u} x_{c}^{2}+\epsilon \int x_{G}^{2} d x_{G},
\end{aligned}
$$

where $\alpha, \beta, \gamma, \delta$, and ϵ are arbitrary constants of very small numbers. F is the dissipation function of the vibration system of the ear.

$$
\begin{aligned}
& F=\frac{1}{2} R_{k} \dot{x_{0}}{ }^{2}+\frac{1}{2} R_{r} \dot{x}_{r^{2}}+\frac{1}{2} R_{1} \dot{x}_{1}^{2}+\frac{1}{2} R_{2} \dot{x}_{2}{ }^{2}+\cdots \\
&+\frac{1}{2} R_{K} \dot{\theta}_{K}{ }^{2}+\frac{1}{2} R_{C} \dot{x}_{C^{2}}^{2},
\end{aligned}
$$

where $R=$ the constant of viscous friction of the different elements. From the information in Diagram II, we can deduce the following relation;

$$
\begin{array}{ccc}
r_{1} \theta_{S}=x_{S} & \theta_{S}=\left(1 / r_{9}\right) r_{s} & r_{3} \theta_{S}=l_{2} \theta_{K} \\
\left.a_{2} / r_{2}\right) x_{S}=r_{2} l_{K} & \theta_{K}=\left(r_{3} / r_{2} l_{2}\right) x_{S} & \theta_{K}=K_{1} x_{S} \\
& & \theta_{S}=K_{3} r_{S} \\
& & x_{C}=\frac{1}{3} x_{s} \tag{3}
\end{array}
$$

where $r_{\mathrm{s}} / r_{3} l_{2}=K_{1}$ and $1 / r_{2}=K_{2}$. Substituting Eqs, (1)(3) for Eqs. T, V, and F, we obtain the following equations:

$$
\begin{align*}
& T=\frac{1}{2} M_{G} \dot{x}_{a^{2}}+\frac{1}{2} M_{T} \dot{x}_{z^{2}}+\frac{1}{1} A f_{1} \dot{x}_{1}{ }^{2}+\frac{1}{2} M_{n} \dot{x}_{a^{2}}+\cdots \\
& +\frac{1}{3} I_{K}\left(K_{1} \dot{x}_{S}\right)^{2}+\frac{1}{2} I_{S}\left(K_{3} \dot{x}_{S}\right)^{2}+b H_{C}\left(\frac{1}{x} \dot{x}_{S}\right)^{2} \tag{a}
\end{align*}
$$

$=\frac{1}{2} M_{G \dot{x}} a^{2}+\frac{1}{2} M_{T x_{r}} \dot{x}^{2}+\frac{1}{2} M_{1} \dot{x}_{1}{ }^{2}+\frac{1}{2} M_{g} \dot{x}_{2}{ }^{2}+\cdots$ $+\frac{1}{2}\left(I_{K} K_{1}{ }^{2}+I_{s} K_{2}{ }^{2}+\frac{1}{3} M I_{C}\right) \dot{x}_{s^{2}}$.

$$
\begin{aligned}
& \gamma=\left\{S_{n}\left(x_{a}-x_{r}\right)^{*}\right. \\
& +\infty \int\left(x_{a}-x_{T}\right)^{r} d\left(x_{0}-x_{r}\right)+1 S_{T}\left(x_{r}-l_{1} K_{1} x_{s}\right)^{2} \\
& +\beta \int\left(x_{T}-l_{1} K_{1} x_{s}\right)^{2} d\left(x_{T}-l_{1} K_{1} x_{s}\right)+1_{2} S_{p}\left(x_{T}-x_{1}\right)^{2} \\
& +\gamma \int\left(x_{r}-x_{1}\right)^{2} d\left(x_{r}-x_{1}\right)+\frac{1}{2} S_{1}\left(x_{1}-x_{2}\right)^{2}+\cdots \\
& \text { (b) } \\
& +\frac{1}{2} \frac{T_{L}}{l_{L}}\left(l_{3} K_{1} x_{S}\right)^{3}+\frac{S_{L}}{2 \mu_{L^{3}}^{3}} \int\left(l_{1} K_{1} x_{S}\right)^{3} d\left(l_{3} K_{1} x_{S}\right) \\
& +\frac{1}{2} S_{11}\left(l_{4} K_{1} r_{s}\right)^{?}+\frac{1}{3} S_{s}\left(r_{1} \sin \theta \cdot K_{2 x} x_{s}\right)^{2} \\
& +\frac{1}{2} \frac{T_{y}}{l_{v}} x_{s}+\frac{S_{y}}{2 l_{y^{3}}} \int x_{x}{ }^{3} d x s+1 S_{u}\left(\frac{1}{2} x_{s}\right)^{2} \\
& +\iint\left(\frac{3}{2} x_{s}\right)^{2} d\left(\frac{1}{2} \cdot x_{s}\right)+\frac{1}{2} S_{11}\left(\frac{1}{2} x_{s}\right)^{2} \\
& \left.+\epsilon \int\left(3 x_{s}\right)\right)^{2} d\left(\frac{f}{s} x_{s}\right) .
\end{aligned}
$$

f. autice
2. external ntudtory canal
3. tympanle membrane
3. ympmance memitsaz
4. yunganle cavity
3. adtua ad antrum
b. antrum
7. alr cella of mastoid proces
f. cellutae liypotympanicac
Enstachian tube
10. Jandle of malleus
10. handle of maldects

1. Malien-Inculal rotatiun axis (conaints of proceaum ante
2. conathentum mathel auteriuk, and of mationt
3. loug procrya of inent
4. Jncudonetapedial jolat
5. Atapere
6. angular Ilgnarent
7. hatlar membrane
8. tensor tympani muncle
2a, atnpecllua muacle

9. ligumentum maltei taterale
10. muluedictus coctsleas
11. endectanina fuld.

$$
\begin{aligned}
& M_{a} \dot{x}_{a}+R_{a} \dot{x}_{a}+S_{0}\left(r_{n}-x_{r}\right)+\alpha\left(r_{a}-x_{T}\right)^{2}=Q_{G}(\text { sound }) \\
& M_{T} \underline{x}_{T}+R_{p} \dot{x}_{T}-S_{f}\left(x_{q}-x_{T}\right)-\alpha\left(x_{\Omega}-x_{T}\right)^{2}+S_{T}\left(x_{T}-l_{1} K_{1} x_{S}\right) \\
& +\beta\left(x_{r}-l_{1} K_{1} r_{s}\right)^{2}+S_{r}\left(x_{r}-x_{1}\right)+\gamma\left(x_{r}-x_{1}\right)^{2}=0 \\
& M_{1} \dot{x}_{1}+R_{1} \dot{x}_{1}-S_{j}\left(x_{T}-x_{1}\right)-\gamma\left(x_{T}-x_{1}\right)^{2}+S_{1} x_{1}=0 \\
& \left(I_{K} K_{1}{ }^{1}+I_{S} K_{2}{ }^{2}+\frac{1}{1} M I_{C}\right) \ddot{x}_{s}+\left(R_{K} K_{1}{ }^{2}+\frac{1}{4} R_{C}\right) \dot{x}_{S}-l_{1} K_{1} S_{T}\left(x_{T}-l_{1} K_{1} x_{S}\right) \\
& -l_{1} K_{1} \beta\left(x_{T}-l_{1} K_{1} x_{S}\right)^{2}+\frac{T_{L} l_{3}^{2} K_{1}^{2}}{l_{L}} x_{S}+\frac{S_{L} l_{3}^{4} K_{1}^{4}}{2 l_{L}^{3}} x_{S}+S_{M} l_{1}^{2} K_{1}^{2} x_{S}
\end{aligned}
$$

Modifying the above equations we obtain the resultant equations showing the mechanics of vibration of the ear.

$$
\begin{aligned}
& M_{a} \dot{x}_{a}+R_{a} \dot{x}_{a}+S_{a} x_{a}+\alpha\left(x_{a}-x_{r}\right)^{2}=Q_{a}+S_{a} x_{r}
\end{aligned}
$$

$$
\begin{align*}
& M_{1} \tilde{x}_{1}+R_{1} \dot{x}_{1}+\left(S_{P}+S_{1}\right) x_{1}-\gamma\left(x_{r}-x_{1}\right)^{*}=S_{p} x_{r} \\
& \left(I_{S} K_{1}{ }^{9}+I_{S} K_{8}{ }^{2}+\frac{1}{2} M_{C}\right) \dot{x}_{S}+\left(R_{K} K_{1}{ }^{9}+\frac{1}{1} R_{C}\right) \dot{x}_{S} \tag{I}
\end{align*}
$$

From the fact that we cannot hear combination tones if the intensities of two tones are less than about 50 db , we can deduce the fact that non-linear vibration does not take place in the vibration system of the ear when the intensities of tones are less than about 50 db . In such a case we can mathematically neglect the terms whose order of x are higher than x^{\prime}.
Thus, simplifying Eqs. (I), we obtain
where

$$
\begin{gathered}
l_{1} K_{1} S_{r}=\mathrm{K} \\
I_{K} K_{1}^{2}+I_{S} K_{2}^{2}+\frac{1}{2} M_{C}=M K_{S} \\
R_{K} K_{1}^{2}+\frac{1}{2} R_{C}=R_{S}
\end{gathered}
$$

$$
l_{1}^{2} K_{1}^{2} S_{T}+\frac{T_{L} /_{3}^{4} K_{1}^{2}}{l_{L}}+l_{4}^{2} K_{2}^{2} S_{u}+S_{S} r_{1}^{2} K_{2}^{2} \sin ^{2} \theta
$$

$$
+\frac{T_{V}}{l v}+\frac{S_{u}+S_{n}}{4}=2 S .
$$

From my observation of the vibrating tympanic membranc, I found that x_{w} is too large in comparison to x s ; so we can neglect x_{s} in Eq. (II). Thus we obtain Eq. (III), showing the mechanism of the air vibration system of the ear, that is to say, in my opinion, the vibration system from the air in the external nuditory canal to the air cells of the mastoid process.

The mathematically solved answer of x_{T} is so complicated that we cannot apply it practically.
It is easier ior us to study the composition of Eqs. (I)-(III), nad deduce the conclusions from them. From Eq. (I) we can conclude:
(a) The ear is one type of a conplicated system consisting of many connected springs.
(b) The vilration of the cochlear tuad which deternines the form of the hearing curves is conducted ly the tympanic membranc.
(c) The viluation of the ear betongs to a non-linear type.

Diagran II. Showing the mechanical structure of the ear. The symbols If $^{\prime}, S, X$, and T designate mass, spring constant, displacement, and tension. Suliscrijts designate different elements as followa:

Other symbols:
1 -ienush of each part of the maldeus and the jncus
 -that kenath between the poaterior pale and the anterior pole of tha thapes denghth between the poaterlor pule and the center of the fucudo. stageethal jolas

f_{s}-t lie andsurement of inertla of elie atapes concerning las axia

$u_{\text {H- }}$-the ande ulsplacement of the axis nf the atarey

Diagrat IIt. Eequivalent electical circtilh for authur's DiaDiagrah IIt. IEquivalent electicat circult for authur's Din-
ram II. Courtesy of Clarles T. Mollay of the Dell Telephome mram II. Courtesy of Claded T. Mollay of

From the structure of Eq. (II) we can conclude:
(d) The tympanic menbrane has an inportant function of composing the viloration of the externatauditory canal, that of the nitrum, and that of the air cells of the mastoid process.
(e) The tympanic membrane has its free vibration whose freguency is considered as the lowest in the air vibratory system. In other words, the value $\left(S_{a}+S_{r}+S_{\mu}\right) / M_{r}$ which determines the frequency of free vibration of the tympanic memprane is smaller than S_{g} / M_{g} or $\left(S_{\mu}+S_{1}\right) / M_{1}$, hecause the value of N_{r} is extremely large compared to the mass $\mathrm{Mf} a$ or M_{3}.
(f) The frequency of the free vibration of the air in the external auditory canal is less than that of the antrum because the air volume of the former is much larger than that of the later, Consequently, we get the following conception: $f_{r}<f_{0}<f_{A}$, where $f_{r}=$ the frefuency of free vilration of the tympanic membrane, $f_{0}=$ the frequency of free vibration of the external auditory canal, and f_{A} mo the frequency of free vibration of the antrum.

DIAGRAM III

Through the resultant Eqj. (III), we can transiate Diagram II into Diagram III showing the electromechanics of the vibration system of the middle carr. This clectrical circuit may be useful in the experimental study of the function of the middle ear elements.

THL ACOUSTICAL EXPERIMENTS

I measured the frequency of free vibration of the tympanic membrane. I pasted a very small and light

Fia, 1 , The free vibration of the tympanle membrane. Time interval 1/100 gec.
mirror on the malleus of a cadaver, nud registered the light reflected from the mirror on a film. I repented such experiments, and the results obtained by the experiments show that the frequency of free vibration of the tympanic membrane is approximately 800 cycles as shown in Pig. I. I consider this value as an exact one because the mirror used in my experiment was extremuly small and light, and its weight would hardly affect the frequency of free vibration of the tympanic membrane.
As the frequency of free vibration of the tympanic membrane with the ossicles, Frank reported 1110, 1002, and 1304 cycles; Kobrak, 800 cycles; and Bekesy, 1000 cycles.

Troeger reported that the normal tympanic membrane has its smallest value of mechanical impedance at 800 cycles. These experimental results are very inturesting when compared with mine as mentioned above, and they coincirde with the frequency of the first peak on the frequency characteristic curve of the normal car obtained by my new hearing test as will be described later.
I calculated the frequency of free vibration of the external auditory canal nud that of the antrum from their anatomical dinensions. The former is $f_{0}=34000 / 4(L+0.6 R)=34000 / 4(3.5+0.6 \times 0.4) \div 2270$ cycles. The latter is $f_{A}=K^{\prime}\left(S^{\prime} / V^{\prime}\right) \div 3650$ cycles, because I regard the free vibration of the antrum as that of Helmholtz's resomator. Here, S is the sectional area of the aditus ad antrum, and V is the volume of the antrum. $K=5617$, for example, $S=0,16 \mathrm{~cm}^{2}, V=1,0$ cm^{3} as in lig. 2.
The dimensions S and V are variable individually but they are in proportional relation. Therefore, the frequency of free vibration of the antrum remains constant in general.

I have not been able to calculate the frequency of free vibration of the ossicles ur find its value experimentally.
The ossicles of the ear have many springs such as the fensor tympani muscle, ligamentum mallei et incudis superior, the stapedius muscle, and ligamentum annu-

Fo. 2. Aditus ad antrum and antrum.

Fin. 3. Imaginary hearing curve.
lare. Due to this fact, we consider that the characteristic curve of the ossicles is probably linear.

However, we may consider that a sort of a luning fork made'by the malleus and the long process of the incus may perhaps have its free vibration period. Following this iden and using Young's modulus in regard to bone, I obtained in 1943,8700 cycles as a value of its frequency.

$$
\begin{aligned}
& f=K(A / L)(E / \rho)^{t^{2}}=0.161 \times(0.083 / 0.5)(E / \rho)^{4} \\
&=8724 \text { cycles }
\end{aligned}
$$

where A and L are thickness and length of tuning fork, respectively. We can consider practically, that the malleus and the long process of the incus are almost of same length, i.e., $l_{1}=l_{2}$ in Diagram II, $E=$ Young's modulus of bone, ρ is its density, $(E / \rho)^{i}=328,000 \mathrm{~cm}$. As mentioned, the car may have four, main, resonance vibrations, From the fact that Diagram III shows electromechanically the air vibration system of the ear as a type of low pass filters, we are able to consider that after the peak of 3600 cycles the curve would drop sharply. Thus we obtain the imaginary outline of the hearing curve as in Fig. 3. However, the valleys between the peaks of this curve are considered as not very deep because the damping constants of the car are large, as may be seen in Fig. 1.

THE HEARNG CURVES

From the standpoint of my above-mentioned theory, it is necessary to get the measuring method of the fre-quency-characteristic curve of the ear, In 1944 I used a beat-frequency oscillator, a telephone receiver, and an attenuator of db scale as its measuring instruments, These acoustic instruments are made by RCA and their characteristics are known exactly.

Their circuit is shown in Fig, 4. In this circuit, a

Fta. 4. Circuits of acoustic instruments used for measuring the frequency-characteristic curve of the ear,

Fic, 5a, Frequency-characteristic curve of normile ear; receiver tetached from the ear.
calibrated telephone receiver is placed 0.5 meter before the ear. The output of the oscillator is set at an arbitrary constant value, and the degree of the attenuator is adjusted until the subject cannot hear the tone of the telephone receiver in a soundiproof room. When the attenuator readings in db scale (corrected for the receiver calibration) are plotted on the ordinate and the frequency plotted on the abscissa, we obsain a curve.

Thus, we obtain the characteristic curve of the normal ear (Fig, 5). The actual characteristic curve of the normal ear thus obtained is similar to the imaginary curve of Fig. 3. However, in detaid, the smail differences of the frequency between both curves are recognized

Fio. 51 . Receiver on the satme ear.

Fig. 6. An example of the normal hearing curve. Only peak iv is prominent on the normal frequency position, i.e., 8500 cycles. The other peaks are uadecided with this curve because the recelver is on the enr.
especially in the peak of the external auditory camal and the antrum. The former difference is due to the approximate calculation which regards the end of the external auditory canal as rigidly closed and neglects the flexibility of the tympanic membrane. The latter difference may be due either to the individual variation of the antrum dimension or to the tympanic membrane pulling the free vibration of the antrum to itself, as is scen in Eq. (III); i.e., $M K_{1} \vec{x}_{1}+R_{1} \dot{x}_{1}+\left(S_{1}+S_{r}\right)_{x_{1}}=0$. Therefore, its natural frequency $1 / 2 \pi\left[\left(S_{1}+S_{p}\right) / M_{1}\right.$ $\left.-R_{1}{ }^{2} / 4 M I_{1}{ }^{2}\right]$, where $S_{1}=$ spring constant of the antrum, $S_{P}=$ that of the tympanic cavity, $R_{1}=$ viscous friction, and $M_{1}=$ the mass of the air in the aditus ad antrum. From Diagram II, $S_{1}+S_{\mu}<S_{1}$; consequently, the measured value in the hearing curve $1 / 2 \pi\left[\left(S_{1}+S_{t}\right) / M_{1}-R_{1}{ }^{2} / H_{1} M_{1}\right]^{3}$ is less than the calculated one $1 / 2 \pi\left(S_{1} / A I_{1}\right)^{4}$. Therefore, according to the obtained hearing curve, it is reasonable to recognize that the peak of 900 cycles corresponds to the resonance vibration of the tympanic membrane, the peak of 2000 cycles to that of the external auditory canal, the peak of 3000 cycles to that of the antrum, and the peak of 8500 cycles to that of the ossicles.
This idea can be illustrated by the following fact, that when the telephone receiver is attached to the ear of the subject, the peak of the external aulditory canal (2000 cycles) disappears in the characteristic curve of the ear as shown in Fig. 5 and Fig. 6.

Fio. 7. The frequency-coergy distribution for speech by Crandall and MacKenzie. Sec Ploys. Kev. 17, 221-32 (1922).
the meaning of the hearing cunve
(a) The difference of sensitiveness between 100 cycles and the first peak in Figs. $5 \mathrm{a}, 5 b$, and 6 is always about 50 db in both tests, with the receiver on the ear and with the receiver detached from the ear. This difference of 50 db on the normal hearing curve appears to me to correspond to the actual amplification of the middle ear. This fact has another important meaning in dingmosis in otology. For instance, this constant difiference will decrease in the case of otitis media when the stiffness of the tympanic cavity increases to that of liquid.
(b) The figure of the hearing curve which has three main peaks ($I-I I-I I I$) is significant in the inteligibility of speech of which the energy curve begins to drop at 250 cycles, as slown in Fig. 7. When compared with the energy of average speech power at 200 cycles (0.024), that (0.002) at 1000 cycles is -10 db , that of 1500 cycles (0.00055) is -17 db and so on. From this fact and the above-mentioned hearing curve, we can understand that the important acoustical role of the middle car is amplification of the speech power in the frequency rauge of $500-5000$ cycles or more. When this amplificition was decreased due to the dysiunction of the middle ear, the intelligibility of speech and syllable articulation was decreased in my experiment. This result corresponds with that of Harvey Fletcher's experiment. ${ }^{1}$
(c) The abnormal displacement and clamping of the first peak and the fourth penk in the test in which the receiver is detached from the subject's ear may be available in the diagnosis of pathological changes of the tympanic membrane and tympanic cavity.

[^34]
The Audibility of Thunder
 Ronizt G. Fliaglit:
 University of Washinglon, Seallie, Washington
 (Received December 30, 19-48)

The relatively short range of audibility of thunder is explained by use of the observer! vertical distributions of temperature and wind velocity in the neightorhood of thunderatorms.

INTRODUCTION

 T has been pointed out by Humphreys ${ }^{1}$ and frequently verified that thunder is seldom heard at distances greater than about 25 km from the lightning flasil. Lightning which is not accompanied by audible thunder is sometimes referred to as "heat" or "sleeet" lightning, although the physical characteristics of "heat" lightuing and lightaing accompanied by thunder stem to be identical. It appears that the inatudibility of thunder is sulject to a simple explanation, which, to the writer's knowledge, has not hitherto been given. The explanation requires calculations of the refraction of sound rays resulting from temperature gradient and wind sliear, subjects which have been discussed by many investigators. ${ }^{2}$ The effects on audibility of attenuation and diffraction are not discussed here.
THEORY

The magnitude of the effects of temperature gradient and wind shear may be determined easily by modifying the theory given by Rayleigh. ${ }^{3}$ From Snell's Law we have for the wave train which is propagated horizontally at the earth's surface .

$$
\begin{equation*}
\sin i=c / c_{0} \tag{1}
\end{equation*}
$$

where i represents the angle between the incident ray and the vertical; c, the velocity of sound at the point corresponding to i_{i} and c_{0}, the velocity of sound at the ground. But since the velocity of sound in air is proportional to the square root of the absolute temperature, (1) may be written

$$
\begin{align*}
& \operatorname{sini}=\left(T / T_{n}\right)^{1} \tag{2}\\
& \tan i=\left(T /\left(T_{n}-T\right)\right)^{1} . \tag{3}
\end{align*}
$$

Since the ratio of the specific heats and the gas constant depends somewhat on moisture content, T and T_{0} should be interpreted as equivalent temperatures, defined as the temperature at which

[^35]the velocity of sound in dry air equals the velocity in silu. This refinement is wnecessary for the present purpose,

From (3) it follows that

$$
\begin{equation*}
d x / d s=\left(T /\left(T_{0}-T\right)\right)^{4} \tag{4}
\end{equation*}
$$

where x and a represent, respectively, the horizontal and vertical coordinates, If we assume a linear lapse rate given by $T^{\prime}=T_{0}-\alpha z_{1}$ equation (4) becomes

$$
\begin{equation*}
d x=\left[\left(T_{0} / \alpha s\right)-1\right]^{1} d s . \tag{5}
\end{equation*}
$$

Standard tables give as the integral of (5)
$x=(1 / \alpha)\left(\alpha z\left(T_{0}-\alpha z\right)\right)!$

$$
\begin{equation*}
-\left(T_{0} / \alpha\right) \tan ^{-1}\left(\alpha z /\left(T_{0}-\alpha z\right)\right)^{4} \tag{6}
\end{equation*}
$$

However, it is convenient for the present problem to integrate (5) after first expanding in a Taylor series. In this way we find that the path of the critical ray is given by

$$
x=2\left(\Gamma_{0} / \alpha\right)^{\prime} z^{1}-\left.(1 / 3)\left(\alpha / T_{n}\right)\right|_{z} 1
$$

$$
\begin{equation*}
-(1 / 20)\left(\alpha / T_{0}\right) s^{s / 4}-\cdots \tag{7}
\end{equation*}
$$

The ratio test shows that the above series converges rapidly within the troposphere ($z<10 \mathrm{~km}$) for the observerl range of α and T_{0}. Since only the first term makes an important contribution, the paths of the critical rays are very nearly parabolas at low elevations.
Integration of (4) in the case of non-linear lapse rates may be accomplishecl by expressing the temperatare by the first few terns of a power series and proceeding as above. For the problem discussed here, only linear lapse rates will be considered since greater accuracy in describing the vertical temperature distribution was not considered necessary.
An estimate of the refraction to be expected from shear may be made by considering the path of a ray propagated horizontilly in the positive x direction at the earth's surface in an isothermal atmosphere with negative shear. This ray is refracted away from the earth, and is analogons to the critical ray discussed above. If we assume
$v_{0}=c+V_{0} \quad \nu=c+V \operatorname{sini}$, and $V=V_{0}-\beta z$
we may write in place of (1)

$$
\begin{equation*}
\sin i=\left(c+\left(V_{0}-\beta z\right) \sin i\right) /\left(c+V_{0}\right) . \tag{8}
\end{equation*}
$$

Here, V_{0} represents the horizontal component of

Fig. 1. Path of raya tangent to earilis's surface at position of observer for 7^{\prime} ma $300^{\circ} \mathrm{K}$ and $\mathrm{om} 9.8,7.5,5.5^{\circ} \mathrm{C} / \mathrm{k} 1 \mathrm{~m}$. The coordinates are: horizontal diatance (x) natd vertical distance (s).
wind velocity parallel to the sound ray at $z=0$, and β represents the horizontal component of vertical shear lying in the plane of the ray. Ustally, β depends on z, but an estimate of the maximum curvature due to shear may be made by assuming β constant. Then we have, from (9)

$$
\begin{align*}
& \sin i=c /(c+\beta z), \tag{10}\\
& \tan i=c /\left[2 c \beta s+\beta^{2} z^{2}\right]^{4} . \tag{11}
\end{align*}
$$

The path is given by

$$
\begin{equation*}
x=\frac{c}{\beta} \int_{n}^{1} \frac{d z}{\left[(2 c z / \beta)+s^{2}\right]^{4}} . \tag{12}
\end{equation*}
$$

For values of $z \ll 2 c / \beta$, the second term under the radical may be neglected, giving

$$
\begin{equation*}
x=[2 c z / \beta] . \tag{13}
\end{equation*}
$$

The paths given by (13) are parabolas. They may be compared approsimately with those computed from (7) by comparing $4 T_{0} / \alpha$ and $2 c / \beta$. If $T_{0}=300^{\circ} \mathrm{K}$ and $c=3.3 \times 10^{4} \mathrm{~cm} / \mathrm{sec}$, it follows that the paths of the critical rays resulting from tenperature gradient and from shear are nearly identical when $\beta / \alpha=55 \mathrm{~cm}^{2} / \mathrm{sec}, / \mathrm{K}$. The following values of vertical wind shear (β) and of vertical temperature gradient (α) result in nearly identical paths of the critical rays,

$\alpha\left({ }^{\circ} \mathrm{C} / \mathrm{km}\right)$	$\beta($ meters $/ \mathrm{sec} . / \mathrm{kmin})$
9.8	6
7.5	4
5.5	3

The values of shear listed here are not larger than those frequently observed in the atmosphere so it must be concluded that shear may modify considerably the curvature due to temperature gradient.

In Fig. 1 the paths of critical rays are shown as computed from (7) or (13) for $\alpha=9.8,7.5,5.5^{\circ} \mathrm{C} / \mathrm{km}$ or $\beta=6,4,3$ meters $/ \mathrm{sec} . / \mathrm{km}$ and $T_{0}=300^{\circ} \mathrm{K}$. For each lapse rate or value of shear, sounds which
originate to the right of the corresponding curve are inaudible at the origin, whercas somuds which originate to the left are nudible. Symmetry with respect to the origin exists for the rays resulting from temperature gradient (but not for rays resulting from wind shear) so that similar regions of audibility and inaudibility exist within any vertical plane passing through the observer. It is, of course, equally true that sounds which originate at the origin are inaudible within the region to the right of the appropriate curve.
Since the curves shown in Fig. 1 are very nearly parabolas, in the simplest cases of negligible shear the regions of audibility approximate paraboloids of revolution with the observer at the vertices. The region of innudibility is the portion of the atmosphere outside the paraboloid of audibility.

The ranges indicated in Fig. 1 are of ten modified by factors not considered here. For example, the range of audibility is extended by diffraction of the wave front in the region to the left of the origin and by layers of stable lapse rate. On the other hand, the range is reduced by attenuation within the atmosphere and by features of the terrain which hinder the horizontal propagation of the critical ray in its final several kilometers and also by super-adiabatic lapse rates frequently present during the day just above the ground.

conclusion

Within thunderstorms the vertical distribution of temperature approximates the pseuloadiabatic rate, about 5 to $6^{\circ} \mathrm{C} / \mathrm{km}$. In the unsaturated air surrounding the thunderstorm the lapse rate is appreciably greater, approximately 7 to $8^{\circ} \mathrm{C} / \mathrm{km} .{ }^{4}$
From Fig, 1 it is apparent that if an average lapse rate of $7.5^{\circ} \mathrm{C} / \mathrm{km}$ is assumed, thunder which originates at a height of 4 km has a maximum range of audibility of 25 km if shear is ineffective.
The vertical wind shear near the base of mature and dissipating thunderstorms studied by Byers and Braham is directed toward the storm and appears to be about 1.5 to 3 meters $/ \mathrm{sec} . / \mathrm{km} ;^{3}$ consequently, sound which originates within the storm must be refracted away from the earth, in this case the shear lies in the plane of the eritical ray throughout a large portion of its path so that the maximum range of audibility as computed from (6) or (7) probably is reduced appreciably and uniformly in all directions. The observed small range of audibility for thunder, thercfore, follows directly from the normal temperature and wind distributions within and in the neighborhood of thunclerstorms.

[^36]
The Lined Tube as an Element of Acoustic Circuits*.

Cilarlias Ti, Mondoy
Bell Telephone Laboratorics, Ine,, Murmy Dill, New Jersey
(Received December 4, 1048)

Abstract

This paper presems a mothod for calculating the performante of acoustic circtits containing lined ructs. The dinmeters of the dicts must be hess thath one-hat the wave- lemgth of sound in free air. The cases of long and shori ducts are treated. For the later, erpuivalent electrical circuita are given, und some discussion is given concerning the efuivalent electrical cirenits for leng ducts, A brief list

 of formulis applicalide to filters employing lined tubes is given.
INTRODUCTION

$I^{7}$$T$ is the purpose of this paper to consider the lined tube as an acoustical element and to slow how this element may be combined with other acoustic elements (see Figs. 1 and 2). The assumption will be made liere that the wave-length is long compared to the largest transverse duct dimension. Distributed parameter formulas will be given for the lined duct which enable one to follow a systematic procedure for calculating the performance of various combinations of lined ducts and other acoustic elements. The use of these formulas will be illustrated by a few examples. One of the important applications of lined tubes is in their use as acoustic filter elements, and it is shown here how the theory of acoustic filters developed by W. P. Mason ${ }^{1}$ for rigid tubes can be adnpted for use with lined tubes.
The assumption described above puts no restriction on the length of the duct. However, in some applications the length of the duet is small compared to the wave-length of the sound propagated in it (duct length $\leq t$-wave-length). In these cases it is possible to make further simplifications and to derive equivalent electric circuits using lumped parameters to represent a lined tube. Several examples are given showing the applications of these circuits. Jt is to be pointed out that lumped parameter representation can be applied to tubes of arbitrary length but that the procedure requires caution. A brief discussion of this is given for rigid walled tubes, and it is believed that the results obtained are applicable to most cases met in practice.

DISTRUBUTED IMPEDANCE METHOD

When a lined tube is part of an acoustic circuit there is a straightforward method for calculating pressures, velocities, and impedances. It is simply this: Start at the end of the system farthest from the sound generator. Then, working towards the generator, compute the acoustic impedance at the various junctions in the circuit until the impedance

[^37]at the generator is oltained. Then, working forward from the generator, calculate the various velocities and pressures, In this process the composite impedance which exists at the end of a lined tube is used as z_{x} in Eq. (3) and the impedance nt the end of the tube nearest the generator is taken as z_{0}. Other impedances are calculated by standard acoustic theory. When computing pressures, velocities, and impedances at the ends of lined tubes, the following formulas can be used. They may be derived by making suitable approximations in the general solution to the duct problem. This reduction is not given here because it is not necessary for the purposes of this paper.**
\[

$$
\begin{align*}
& v_{l}=v_{0}\left(A_{h} / A_{d}\right) \\
& \quad \cdot\left[z_{c} /\left(\varepsilon_{c} \cosh i \Gamma_{x 00} l+z_{x} \sinh i \Gamma_{x 00} l\right)\right], \\
& p_{t}=p_{0}\left[z_{z} /\left(z_{z} \cosh i \Gamma_{x 00} l+z_{c} \sinh i \Gamma_{z 00} l\right)\right]_{1} \tag{2}\\
& \varepsilon_{0}=z_{c}\left[\left(z_{x}+z_{s} \tanh i \Gamma_{x 00} l\right) /\left(z_{0}+z_{x} \tanh i \Gamma_{x 00} l\right)\right], \tag{3}\\
& z_{0}=k / \Gamma_{z 00} \tag{4}
\end{align*}
$$
\]

where:
$A_{A}=$ area of opening into tube on side nearest the sound gencrator (cm^{2}).
A_{1} marea of duct cross section ($\mathrm{cm}{ }^{2}$).
$v_{0}=$ linear velocity of air at entrance to tube out side of hole As nearest the generator (cm/sec,). If the hole A_{h} were closed by a piston, y_{0} would be the linear velocity of the piston.
vemenear velocity of air inside the tube at end farthest from generator ($\mathrm{cm} / \mathrm{scc}$.).
p_{0} macoustic pressure inside tulae at end of tube nearest the generator (dynes/cm²),
$p_{1}=$ acoustic pressure inside tube at end of tube farthest from generator (dynes/an').
$t \mathrm{~m}$ tube length (cm).
r_{400} malongiudinal propagation constant.
$k=\omega / c$.
$z_{8}=$ characteristic impedance of tubse in (ρ) units; pressure/ (p c \times linear velocity).
is a impedance of tube termination in (ρc) units pressure/ (oc \times linear velocity).
z_{0} ainput impedance of tube in (ρc) uaits; pressure/(ρ c Xlinuar velocity). Presillte and velocity are taken inside the tube and not inside hole A_{A}.
** Complete details may be found in C. T. Molloy, The Propagation of Sound in Tubes Lined wilh Sound Absorbing Afacerial, Doetoral Dissertation, New York University, 1948.

Fig. 1. Rectangular duct.
The writer ${ }^{2}$ has given an approximate formula for I'xoo applicable to ducts of arbitrary cross section where the lining is formed of strips of absorbing material of constant width whose long edge is parallel to the duct axis. In the present notation the formula is:

$$
\begin{align*}
& \mathrm{I}_{x 00}=\left[k^{2}-i k\left(L / A_{i}\right) \cdot\left(1 / z_{0}\right)\right], \tag{5}\\
& 1 / z_{t}=\sum_{i=1}^{i=n}\left(1 /\left(L / l_{i}\right) z_{i}\right), \tag{6}
\end{align*}
$$

where:

> I. $_{3}$ a duct perimeter (cmi),
> $l_{i}=$ width of (ith) strip.
> $z_{i}=$ acoustic inpedance of (ith) strip in (pc) units,
> $n=$ number of strips.

The preceding Eqs. (1)-(6), together with standard acoustic theory, permit the analysis of any acoustic circuit in which lined tubes are present. The use of these formulas will be illustrated by a few examples,

LINED DUCT OPEN AT ONE END

Consider a lined duct having a circular cross section of length (l), cross-sectional area $\left(A_{t}\right)$, and radius (a) driven by a piston of area A_{h}. At the end of the duct remote from the piston a large flange is assumed to exist. The aconstic impedance at this end is therefore the well-known impedance of a piston mounted in a baffle and radiating out into space. ${ }^{3}$

$$
\begin{equation*}
z_{x}=\left[1-\left(J_{1}(2 k a) / k u\right)\right]+\left[S_{1}(2 k a) / k a\right] i \tag{7}
\end{equation*}
$$

${ }_{3}^{2} \mathrm{C} . \mathrm{T}$. Malloy, J. Acous, Suc. Am. 16, 31 (19.44).
${ }^{3}$ IP. M. Norse, Vibration and Sonnd' (McGraw-ilill Buok Compiny, Inc., New York, 1936), p. 250,
whare J_{1} is Bessel's function of the first kind and order one and S_{1} is a Struve Function, Equation (7) - insertedfinto formulas (1)-(3) will yiekd any of the pertinent acoustical quantities directly.

LINED DUCT COUPLED TO A VOLUME AT ONE END

Consider the same system as above except that the end of the duct remote from the piston is closed with a thin rigid phate having a hole of area (S) cm^{3}. The duct communicates through the hole with a rigid walled closed container of volume $\mathrm{V}^{2} \mathrm{~cm}^{3}$,
If ((0) is the linear velocity of air it the hole (S), and (v_{l}) is the linear velocity of air in the duct a very short distance in front of the lole (S), then by continuity of volume flow we have:

$$
\begin{equation*}
v S=v_{l} A_{d t} \tag{8}
\end{equation*}
$$

and since the pressure is constant we lave:
Or

$$
\begin{equation*}
S / \varepsilon_{v}=A_{d} / z_{z} \quad \text { and } \quad z_{z}=\left(A_{d} / S\right) z_{u} \tag{10}
\end{equation*}
$$

where z_{y} is the acoustic inpedance of the volune V and is given by:

$$
\begin{equation*}
z_{v}=-(S / V k) i \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{2}=-\left(A_{1} / V k\right) i . \tag{12}
\end{equation*}
$$

This (z_{z}) can be inserted in the formulas (1), (2), and (3) and the acoustical quantities of interest computed. ${ }^{* * *}$

FILTER THEORY

The theory of acoustic filters in which watve propagation occurs in the filter elements was first given by W. P. Mason² in 1927. In his lucid article Mason treats filters composed of a main tube having rigid walls connected to regularly spaced side branches. His treatment includes the effect of viscosity. In his paper Mason shows that the equivalent electrical circuit for a rigid wall tube is an electrical transmission line in which there is no leakance. However, in developing the theory be

Fig. 2, Circular duci.
** The mass and resistance of the hole have been neglected.

Fig. 3. Exactly equivalent " T " network.
makes use of the fact that the leakance is zero only in the calculation of the propagation constant of the main tube of the filter and in the calculation of the characteristic impedance of the filter main tulue. The form of his pressure and velocity functions remain unchanged even if leakance is present except that new definitions are required for his propagation constant and characteristic impedance. Since Sivian ${ }^{3}$ has shown that the lined tube is equivalent to an electric transmission line in which leakance is present, it follows that Mason's theory of filters cati be taken over in toto when the changes noted above are made. Since the derivation of filter formulas using lined tubes as elements would precisely parallel that given by Mason for rigid tube elements, only a list of formulas giving the main results of lined tube filter theory is presented here.

SUMMARY OF LINED TUBE FILTER THEORY FORMULAS

$$
\begin{align*}
& p_{n}=p_{0}\left[\cosh (i n \sigma)-\left(\frac{z_{j}}{z_{0}}\right) \sinh (i n \sigma)\right], \tag{13}\\
& v_{n}=v_{0}\left[\cosh (i n \sigma)-\left(\frac{z_{0}}{z_{j}}\right) \sinh (i n \sigma)\right], \tag{14}
\end{align*}
$$

$$
\begin{equation*}
z_{0}=g_{f}\left[\frac{z_{n}+i_{f} \tanh (i n \sigma)}{z_{f}+\varepsilon_{n} \tanh (i n \sigma)}\right], \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
z_{f}=z_{n}\left[\frac{1+\left(\frac{z_{c} A_{n}}{2_{n} A_{n}}\right) \tanh (i \Gamma l)}{1+\left(\frac{z_{N} A_{n}}{2 z_{H} A_{d}}\right) \operatorname{coth}(i \Gamma l)}\right] \tag{16}
\end{equation*}
$$

$\Gamma=\Gamma_{x v o}$ defined by equation (5).

$$
\begin{equation*}
z_{0}=\frac{k}{\Gamma} \tag{17}
\end{equation*}
$$

$\cosh i \sigma=\cosh (2 i \Gamma l)+\left(\frac{z_{c} A_{u}}{2 z_{M} A_{d}}\right) \sinh (2 i \Gamma l)$,

Fig. 4. Exactly equivalent " $1 x^{i}$ " network.
$\delta=10 \log 50\left[\frac{\left|z_{0}+z_{8}\right|^{4}}{\left|z_{n}+z_{4}\right|^{2}}\right.$

$$
\begin{equation*}
\frac{1}{\left[\cosh (i n \sigma)+\left.\left(\frac{\Xi_{0}}{z_{f}}\right) \sinh (i n \sigma)\right|^{2}\right]} \tag{19}
\end{equation*}
$$

The type of filter to which the above formulas apply is the same as that shown in Mason's ${ }^{1}$ Fig. 2. It comprises (n) identical filter sections. Each section lias a main tube and a side branch. The sicle branch is placed at the mitelle of the main tube. Thus, in one section the main tube has a length (2l) while the branch is placed at a distance (l) from each end of the section.
$p_{n}=$ pressure at end of nth section.
$v_{n}=$ linear velocity at end of nth section.
$p_{0}=$ pressure at ingut of last filter neetion.
$v_{0}=$ linear velocity at input of Ist filter section.
z_{0} mimpedance at input of 1st filter section.
$\mathrm{g}_{\mathrm{n}}=$ terminating impedance of ath filter suetion.
z_{f} mecharacteristic impedance of filter.
$z_{z}=$ characteristic impedance of main tube.
$z a m$ impediance of side liranch of filter.
za mimpedance at input to Jat fitter section koking towared the source.
σ mpropagation constant for filter.
Impropagation constant for main tube.
$n=$ mumber of filter sections.
$t=$ hatf the lengeth of one filter section.
A asarea of main filter nube.
A_{n} esarea of side branch opening
Lso main tube perineter,
δ minsertion loss due to filter (elt)-(assumes filter main Whe has the same cross-sectionat trea as the tulbe of the aystem in which it is inserted)
Note-All impedances are in (oc) units, i.e., presture/ ($n c \times$ linear velocity).

EQUIVALENT ELECTRICAI. CIRCUITS

In the previous paragraphs restrictions were placed only on the diameter of the duct (Sivian ${ }^{4}$ tinds on the basis of limited experimental data that the duct diameter must be less than $\frac{1}{2}$ the wavelength of the sound propagated in free space). If to this restriction we add that the length of the duct be less than $\frac{1}{8}$-wave-length, it is possible to

[^38]

Fitg. 5, Lumped parameter equivalent circuit for lined tube.
write an equivalent electrical "Tee" for the duct using lumped parameters. As a matter of fact this equivalence is not "one to one" since a given duct system can be represented by several equivalent electrical circuits all of which are valid. For example a lined tube may be represented as a "Tee" network, a "Pi" network, a Lattice, etc. The discussion here will be limited to a "Tee" network. The other types can readily be worked out from this by use of well-known transformations.
References ${ }^{5}$ on electrical transmission line theory give the derivation of the exactly equivalent "I'ce" and " $1 \mathrm{i} i$ " networks for the long electrical line. In the nomenclature of this paper these networks are shown in Figs. 3 and 4.

If the impedance $\left(\tilde{n}_{0}\right)$ is calculated from cither of the above two networks it will be exactly that given by Eq. 3. If now we impose the condition that $l<\lambda / 8$ then the series arms are given correct to about 5 percent each by using only the first term in the expansion of $\tanh (i \Gamma l / 2)$ and the shunt arm is given correct to nbout 10 percent by using only the first term in the $\sinh (i \mathrm{I} l)$ expansion. Under these conditions we lave:

$$
\begin{align*}
& \Xi_{\mathrm{s}} \tanh (i \mathrm{I} l / 2) \approx(k / \mathrm{\Gamma})(i \Gamma l / 2) \approx i k l / 2, \tag{20}\\
& \frac{z_{\mathrm{c}}}{\sinh (i \Gamma l)} \approx(k / \Gamma)(1 / i \Gamma l)=(k / i l) 1 / \Gamma^{2} . \tag{21}
\end{align*}
$$

Combining (5) and (21) there results:

$$
\begin{align*}
\frac{1}{\text { Shunt arm impedance }} & =\frac{\sinh (i \Gamma l)}{z_{0}} \\
& =\frac{1}{[1 /(l / c) \omega i]}+\frac{1}{\left(A_{d} / l L\right) z_{0}} \tag{22}
\end{align*}
$$

The lumped parameter representation of the "Tee" becomes as shown in Fig. 5. For low frequencies and the case of uniform lining on all duct walls the following approximation is valid:

$$
\begin{equation*}
z_{0} \approx r-i \cot k d \approx r+1 / i k d \tag{23}
\end{equation*}
$$

[^39]

Fig. 6. Lumped parameter equivalent circuit for lined tule showing lining impedance as resistance and capacitance in scries.
where $r=$ resistive component of lining impedance and (d) is the thickness of lining. (This approximation is valid only for essentially homogeneous linings, such as are mostly used in practice. It does not hold if the lining is a composite structure.) For some commercial materials the (r) has been determined ${ }^{6}$ and can be read directly from curves. Equation (23) shows (ε_{*}) to be a resistance and capacity in series. When this is inserted in the previous circuit there results the network shown in Fig. 6.
Note-In all the equivatent circuits used here the impednnees are in " ρc " units, If it is desired to utilize these circuits so that pressure is analogous to impressed voltage and velocity amalogous to current in a branch then nll impedance values must be multiplied by ($\rho \mathrm{cm} \mathrm{m} 4 \mathrm{t}, 5$). This neans that all inductances and resistances must be multiplied by (41.5) and all capacitances divided by (41.5).

NUMERUCAL EXAMPLE

The following calculation of circuit constants is for a 6 -inch diameter circular duct lined with JohnsManville "Airacoustic" whose length is 15 inches and which is terminated in a large flanged open end. Reference frequency $=100 \mathrm{c} . \mathrm{p}$:s.

Length $(l)=15$ inches $=38.1 \mathrm{~cm}$.
Diameter $=6$ inches.
$r=5.0 \mathrm{~cm}, d=3.29$ (reference 6, Fig, 2, curve c), $\left(A_{1} / I L\right)=1 / 38.1 \cdot 7.62 / 2=0.1_{1}$

Ftg. 7. Lumperd parameter equivalent circuit for lined duct with rigicl termination.

- L. Reranck, J. Acous, Soc. Am. 12, 14 (1940).

$$
\begin{aligned}
& \mathcal{L}=38.1 /\left(2 \times 3.44 \times 10^{9}\right)=5.54 \times 10^{-4} \text { henrics, } \\
& C=38.1 /\left(3.44 \times 10^{4}\right)=1.11 \times 10^{-4} \text { faracls, } \\
& R=0.1 \times 5=0.5 \text { olm, } \\
& C_{1}=(10 \times 3.29) /\left(3,44 \times 10^{4}\right)=0.56 \times 10^{-4} \text { farads, } \\
& s_{x}=0.01+0.10 \text { olms }(\text { Eq. } 7) .
\end{aligned}
$$

If the length of a cluct is greater than $\frac{d}{}$-wavelength, at the lighest frequency for which humped parameter representation is desired, it may be divided into sections and each section represented as an equivalent "Tee" terminated by the succeeding section. It is evident that some consideration must be given to the choise of the length of each of these sections. Since the performance of each "Tee" deviates from that of the tube section which it represents it is clear that the network, representing the whole tube, being itself a composite of several "Tees" in tandem, will deviate in its performance from that of the tube which itrepresents. Further it is to be expected that the deviation of the network will reflect the cumulation of errors of the individual "Tees" composing it. It is this consideration which makes the proper sub-division of a long tube so important. The case of a rigid walled tube has been studied and estimates of the cumulative error obtained. It is believed that these results can be used for most practical cases even when the tube walls are not rigid. If a rigid walled duct of length (l) is subdivided into (n) equal sections eneh of length (l / n), then the equivalent circuit is composed of (n) "Tees" in tandem, ench "Tee" of the form shown in Fig. 5. In this case $z,=\infty$. The relations between the input and output, voltage and current have the same form for this network as do the input and output pressure and velocity in the tulue. The differences between the two cases lie in their propargation constants and claracteristic impedances. For the tube we have;
$\Gamma /=\omega / / c ; \quad$ Characteristic $:$ impedance $=1$.
For the network we have:

$$
1 l \approx(\omega l / c)+(n / 24)(\omega l / n c)^{3} ;(\omega l / n c) \ll 1
$$

Characteristic impedance $=\left(1-(\omega l / 2 n c)^{2}\right)^{1}$.
The network (I) and characteristic impedance can be inserted in the tube distributed parameter formulas and the deviations for any particular case computed. The error in the argument of the hyperbolic functions for the network as well as the characteristic impedance can be expressed in terms of the ratio of the length of one section to the wave-length and the number of sections.

Error in $\Gamma l=(n / 24)(\omega l / n c)^{3}=10.34 n m m^{3}$ (radians), Characteristic impedance $=\left(1-(\omega / / 2 n c)^{2}\right)^{3}$ $=\left(1-9.870 m^{2}\right)^{1}$,

Fig. 8. Lumped parameter equivalent circuit for lintel duct with open end.
$n=$ number of sections into which tube is subdivided, and
$m=l / n \lambda$.
This concludes the discussion of the theory of lumped parameter representation for a lined duct. For purposes of illustration there are given below the equivalent electrical circuits for some acoustical systems which include lined ducts.

SYSTEM \# 1

Lined duct with rigid termination.
The network for this case is shown in Fig. 7.

$$
\begin{aligned}
& s_{0}=(\rho c \text { units }), \\
& \mathcal{L}=l / 2 c \text { (henries), } \\
& C=l / c(\text { farads }) \\
& R=\left(A_{\mathrm{t}} / / L L\right) \text { (olms), and } \\
& C_{1}=\left(l L / A_{\mathrm{d}}\right) / l / c(\text { (} \mathrm{arads}) .
\end{aligned}
$$

SYSTEM \#2

Lined duct with an open end and a large flange on open end.
For this case the terminating impedance is given by Eq. (7). However, it has been shown ${ }^{7}$ that this impedance can be represented approximately by a resistance and an inductance in parallel. The circuit for the flanged open ended tube then becomes the one shown in Fig. 8.

Fig. 9. One section of filter haviny main tube lined and side brancles which are lined tubes rigidfy terminated.

[^40]
$z_{0}, A_{1} C_{1} R$ and C_{1} exnctly as defined in System \#1,
 $R_{1}=1.44$ ohms, and
 $\Omega_{1}=2.47 \times 10^{-5} \times$ (duct radius in centimeters).

SYSTEM \#3

Acoustic filter having main tube lined and side branches which are lined tubes rigidly terminated (sce Fig. 9).
$S=l / 2 c$ (henries),
$C=l / c$ (farads),
$R=\left(A_{d} / l L\right) r$ (ohms),
$C_{1}=\left(l L / A_{d}\right) d / c$ (farads),
$l=$ Length from beginning of section to side branch (i,e, hali the section length) (cm),
$A_{d}=$ Cross-sectional area of main filter tube (cm^{3}),
$L=$ Perimeter of main filter tube (cm),
$r=$ Acoustic resistance of main tube lining (ρc units),
$d=$ Thichness of main tube lining (cm),
$\mathscr{L}_{A}=\left(A_{d} / A_{u}\right) \cdot\left(l_{u} / 2 c\right)$ (henries),
$C_{n}=\left(A_{B} / A_{d}\right)\left(l_{B} / c\right)$ (farads),
$R_{n}=\left(A_{d} / A_{n}\right) \cdot\left(A_{n} l_{n} L_{n}\right) \cdot r_{n}=\left(A_{d} / l_{B} L_{B}\right) r_{n}$ (ohms), $\mathcal{C}_{n!}=\left(A_{H} / A_{d}\right)\left(l_{B} L_{n} / A_{n}\right) \cdot d_{H} / c=\left(l_{n} L_{n} / A_{H}\right)\left(d_{n} / c\right)$ (farads),
$l_{u}=$ Length of side bramels tube (cm),
$A_{A}=$ Cross-sectional aren of side branch tabe (cm^{2}),
$L_{\mu}=$ Perimeter of side branch tube (cm),
$r_{H}=$ Acoustic resistance of side branch tube (ρe units), and
$d_{n}=$ Thickness of side branch lining (cm).

RESULTS

1. A method for calculating the performance of acoustic circuis containing lined ducts is given. The diameter of the ducts nust be less than one-halt the wavelength of the somud in free nir but there is no restriction on the duct length.
2. The relationship between Mason's rigid tube acoustic filter theory and the theory of acoustic filters composed of lined tubes is pointer out and a brief list of filter formulas is given.
3. The lumped parameter equivalent circuit for a lined tube of length less than one-eighth wavelength is given and examples are given of its use, Some discussion of the equivalent circuits of long tubes is also given.

ACKNOWLEDGMENT

The writer wishes to take this opportunity to acknowledge the friendly help reecived from Dr. George E. Hudson under whose guidance the dissertation of which this paper is a part was prepared.

Sound Transmission through Multiple Structures Containing Flexible Blankets*

Acoustics Laboratory, Afassachuselts Institule of Techuology, Cambridge 30, Mfassachuselts
AND
Georget A. Work***
Physics Laboratories, IIamard University, Cambridge 35, Mfassachusetts (Received April 18, 1949)

Abstract

A general theory of sound tratsmission for normal wave incidence is developed for a strucure containing two impervious layors, an air bipace, and iwo acolstical blankets, Equations for more simple structures are derived from the general case loy setting some of the parameters equal to zero. A number of design charts are presented giving ittenuation in decibels ts, frequency for differunt structures with specific acoustic resistivity of the blankes material as at pirameter. Experimental results are found to be in gond ayrement with the theoretical predictions. It is found that pands deviate from mass law behavior as their thickness is increased. Mass law behavior is obtained for panels of any thickness when a laminated construction is tsed to damp out tlexural waves.

I. INTRODUCTION

A^{s}S part of a World War 11 program for quieting aireraft, Nichols et al. studied experimentally ${ }^{1,2}$ a series of six attenuating structures. Each of these structures is a special case of a more gereral multiple structure consisting of two impervious layers (panels), an air space, and two flexible acoustical blankets. In the present paper an exact theory is developed for predicting the attemation characteristics of these structures as a function of frequency for the special case of normal wave incidence. The resulting equation gives the ratio of the pressure incident on the structure to that radiated into a perfectly absorbing termination. The air space and blankets are treated as elements with distributed parameters and acoustic impedance boundary conditions at the interfaces.
Use is made of the results obtained in an earlier paper ${ }^{3}$ relating the propagation constant and characteristic impedance of homogeneous, porous blankets to the fundamental parameters of specific acoustic resistivity, density, and, to a lesser extent, structure factor, volume coeflicient of elasticity and porosity. From the clarts presented in reference (3) the propagation constant and characteristic impedance were found and then inserted into the formulas derived here to give design charts of attenuation as a function of frequency.
Experimental attenuation-frequency rlata obtained on 18×18-inch panels using a modifed form

[^41]of an apparatus described in reference (2) is compared with the theoretical predictions. Some data olatained on single panels are also presented to indicate the increased attenuation made possible through the use of a "saudwich" type construction, such as bonded layers of duraluminum and mica. The apparatus appears to be a suitable method for measuring attenuation at normal incidence. Extension to larger panels and other angles of wave incidence appears to be feasible. A cooperative effort to develop a similar type of apparatus for measuring panels as large as 8×8 feet is now underway at the Acoustics Laboratory at the Massachusetts Institute of Technology.

II, THEORY

The structures to be considered are shown in Fig. 1. First, let us derive a general equation for the basic system, Structure V. Results for the more simple structures ($0-1 V$) will then be obtained by setting some of the parameters equal to zero. In Fig. 1, Structure V is composed of: (1) an impervious layer (e.g., dural sheet) of surface density σ_{11} (2) an air space of thickness l, (3) a flexible blanket of thickness d_{1}, (4) an impervious layer

Fic. 1. Sketches of the six principal types of structures discassed in this paper.

(e.g., septum) of surface density σ_{4}, and (5) a second flexible blanket of thickness d_{2}.
Sound is to be propagated through the structure as a plane wave, starting with a magnitude p_{0} at the surface of the left hand impervious layer. It will emerge from the right hand side of the l_{2} blanket with a magnitude p_{0} and is assumed to continue on into an "infinite" (ρc) medium. In order to calculate the ratio of p_{0} to p_{s}, and hence, the attenuation or transmission loss, we will need the ratio of pressures at successive interfaces. The pressure in the blankets or air space will be given by the welt-known solution of the one-dimensional wave equation

$$
\begin{equation*}
p=A \cosh \left(b x+\psi_{b}\right), \tag{1}
\end{equation*}
$$

where x is the distance from a terminal inipedance $Z_{r_{1},} b$ is the propagation constant for the medium, and

$$
\begin{equation*}
\psi_{b}=\operatorname{coth}^{-1}\left(Z_{r} / Z_{0}\right) . \tag{2}
\end{equation*}
$$

Z_{0} is the characteristic impedance of the medium,

Fig. 2, Ratio of pressures on the primary and secondary sides of Structure 0 expressed in decibels, The secondary side is assumed to be terminated in th characteristic impedance of air.
i.e., of an infinite medium. Equation (2) follows directly from the impedance relation

$$
\begin{equation*}
Z=Z_{0} \operatorname{coth}\left(b_{0} x+\psi_{b}\right) \tag{3}
\end{equation*}
$$

by setting $Z=Z_{T}$ at $x=0$.
In the air space $b=j_{\omega / c}$ and $Z_{\theta}=p c$. In the blanket b and Z_{0} will be complex functions of the fundamental parameters of the blanket: specific acoustic resistivity R_{1} (i.e., specific acoustic resistance of a unit cube of the material), density ρ_{m} and, to a lesser extent, structure factor k, volume coefficients of elasticity K and Q and porosity Y. in a previous paper charts (Figs, 1 and 2 of reference (3)) were presented, giving the magnitude and plase angle of the propagation constant, b, for the case of flexilble (soft) blankets. A flexible blanket is defined as one for which the ratio K / Q is greater than twenty, where K and Q are the volume coefficients of elasticity of the air in the blanket, and of the acoustical material, respectively. In this case we are neglecting the highly attenuated wave

Fig. 3. Ratio of pressures on the primary and secondary sides of Siructare 1 expressed in decibels. The secondary side is assumed to be terminated in the claracteristic inspedance of air.
assochated with the skelcton, so that it is possible to express the pressure, p, as a hyperbolic function involving a single propagation constant (see Eq. 1) If we make the further assumption that the porosity Y is greater than 0.95 , then the characteristic impedance of an infinite sample is found from Eq. (27) of reference 3 ,

$$
\begin{equation*}
Z_{0}=(j K / \omega Y) \cdot b \tag{4}
\end{equation*}
$$

The impervious layers will be.assumed to have
no stiffness so that their imperlances can be represented by $j \omega \sigma$, where σ is the surface density. With the help of Eq. (3) we can determine the impedances at the interfaces of the layers of the structure. In the following we designate the impedance looking from left to right by Z_{i}, where the subseript i refers to the interface, Proceeding from left to right (see V of Fig. 1), Z_{1} is the impedance as seen from the right side of the first (σ_{1}) impervious layer, Z_{2} the

Fig. 4. Ratio of pressures on the primary and mecondary sides of Structure Il expressed in decibels. The secondary side is assimed to the terminated in the characteristle linpediace of ath:

FIG, 5, Ratio of pressures on the primary and recondary sides of Structure [II expressed in decilels. The secondary side is assumed to be terminated in the characteristic impednece of air.
impedance seen from the air space-blanket interface, etc. We find

$$
\begin{align*}
& Z_{b}=\rho c_{1} \tag{5}\\
& Z_{4}=Z_{0} \operatorname{coth}\left(b d_{3}+\psi_{1}\right), \tag{6}\\
& Z_{3}=Z_{i}+j \omega \sigma_{0}, \tag{7}\\
& Z_{a}=Z_{0} \operatorname{coth}\left(b d_{1}+\psi_{2}\right), \tag{8}\\
& Z_{1}=\rho c \operatorname{coth}\left(j \omega l / c+\psi_{1}\right), \tag{9}
\end{align*}
$$

where the ψ 's are, from Eq. (2),

$$
\begin{align*}
& \psi_{1}=\operatorname{coth}^{-1}\left(\rho c / Z_{0}\right), \tag{10}\\
& \psi_{2}=\operatorname{coth}^{-1}\left(Z_{3} / Z_{0}\right), \tag{11}\\
& \psi_{1}=\operatorname{coth}^{-1}\left(Z_{2} / p c\right) . \tag{12}
\end{align*}
$$

The ratio of pressures on opposite sides of each impervious layer is given by the impedance ratio because the velocity is continuous. The ratio of pressures on opposite sides of the air layer or blankets can be found from Eg. (1). As was done for the impedance, let us designate the pressure at a particular interface by an appropriate subscript, proceeding in order from left. to right (p_{0} and p_{6} have already been defined). The pressure ratios are seen to be:

$$
\begin{align*}
& p_{0} / p_{1}=1+j \omega \sigma_{1} / Z_{1}, \tag{13}\\
& p_{1} / p_{2}=\left[\cos h\left(j \omega l / c+\psi_{1}\right)\right] / \cosh \psi_{1} \tag{14}\\
& p_{2} / p_{3}=\left[\cosh \left(b l_{1}+\psi_{3}\right)\right] / \cosh \psi_{2}, \tag{15}
\end{align*}
$$

TRANSMISSION THROUGII AULTIPLE STRUCTURES
$p_{3} / p_{4}=Z_{3} / Z_{4}=1+j \omega \sigma_{0} / Z_{4}$
$p_{4} / p_{5}=\left[\cosh \left(b d_{2}+\psi_{4}\right)\right] / \cosh \psi_{4}$

Multiplying together Eqs. (13)-(17) gives, of course, the desired ratio p_{0} / p_{6}. Utiljzing Eqs. (5)(12) to redtice the involved product, one obtains after several expansions of the hyperbolic functions, the following general result for Structure V.

Struclure V

$p_{0} / p_{5}=\left[x_{1} \cos l_{2} b d_{1}+x_{2} \sin h b d_{1}\right] \cos \ln b d_{2}$ $+\left[x_{2} \cosh b l_{1}+x_{4} \sinh b l_{1}\right] \sinh b l_{2}$
where

$$
\begin{align*}
& x_{1}=A+j\left(B+A \omega \sigma_{1} / \rho c\right) \tag{19}\\
& x_{1}=A Z_{0} / \rho c-B \omega \sigma_{1} / Z_{0}+j B \rho c / Z_{0} \tag{20}
\end{align*}
$$

$x_{1}=A Z_{0} / \rho c+j\left(B \rho c / Z_{0}+A \omega \sigma_{1} / Z_{u}\right)$
$x_{4}=A-\omega \sigma_{4} \rho c / Z_{0}{ }^{1} B+j B$
$A=\cos (\omega / / c)-\left(\omega \sigma_{1} / \rho c\right) \sin (\omega l / c)$
$\beta=\sin (\omega / / c)+\left(\omega \sigma_{1} / \rho c\right) \cos (\omega / / c)$,
Setting various parameters equal to aero in Eqs. (18)-(24) we obtain the following results for the derived family of structures.
Struchure $I V ; d_{3}=0, d_{1}=d$
$p_{0} / p_{6}=x_{1} \cosh b d+x_{2} \sinh b l$
Struclure ITI; $d_{1}=0, d_{2}=d$.
$p_{0} / p_{5}=x_{1} \cosh b d+x_{3} \sinh b d$

Fig. 7. Ratin of pressures on the prinary and secondary sides of Structure V expressed in decilefis. The secondary side is assumed to be terminated in the characteristic impedance of air.

Fif. 8. Difference in decibels hetween the attenuntion provided by the structure shown on the graph and that provided by the damped metal panel of density I_{5}. These graphs illustrate the aprement between theory and measerement for four diferent types of siructures.

Structure $I I_{;} d_{2}=0, \sigma_{4}=0, d_{1}=d$

$$
p_{0} / p_{5}=(A+j B) \cosh b d l
$$

$$
\begin{equation*}
+\left(A Z_{0} / \rho c+j B \rho c / Z_{0}\right) \sin h^{2} b d \tag{27}
\end{equation*}
$$

Strueture $I_{;} d_{2}=0, \sigma_{2}=0, l=0, d_{1}=d$

$$
\begin{align*}
& p_{0} / p_{\Delta}=\left(1+j \omega \sigma_{1} / \rho c\right) \cosh b d \\
&+\left(Z_{0} / \rho c+j \omega \sigma_{1} / Z_{0}\right) \sinh b l \tag{28}
\end{align*}
$$

Structura $O ; d_{1}=d_{2}=0$

$$
\begin{equation*}
p_{0} / p_{b}=x_{1}=A+j\left(B+A \omega \sigma_{4} / \rho c\right) . \tag{29}
\end{equation*}
$$

Two additional structures, designated Partitions Type 1 and 2 , are special cases of Structures O and IV, respectively,

$$
\begin{array}{r}
\text { Partilion Type } 1_{;} d_{1}=d_{1}=0, \sigma_{1}=\sigma_{1}=\sigma \\
p_{0} / p_{k}=A+j(B+A \omega \sigma / A c) \tag{30}
\end{array}
$$

where, $\sigma_{1}=\sigma$ in Eqs. (23) and (24).

$$
\text { Partilion Type 2; } d_{2}=0, l=0, \sigma_{1}=\sigma_{4}=\sigma
$$

$$
\begin{array}{r}
p_{0} / p_{5}=(1+2 j \omega \sigma / \rho c) \cosh b d+\left(Z_{0} / \rho c-\omega^{3} \sigma^{2} / Z_{n} \rho c,\right. \\
\left.+j \omega \sigma / Z_{0}\right) \sinh b d . \quad \text { (31) }
\end{array}
$$

Because the expressions above for attenuation are quite complicated, design curves for each type of structure have been prepared. The resign charts, presented in Figs. 2-7, give the attenuation of each structure for various values of the depth of the air space l in cm , the thicknesses of the two blankets d_{3} and d_{2} in cm , and the specific (unit volume) resistance of the blanket R_{1} in rayls $/ \mathrm{cm}^{*}{ }^{* * * *}$ It is shown in reference 3 that R_{1} varies only slightly with frequency, and is approximately equal to R_{f},

[^42]the flow resistance per cm thickness measured by a steady air flow method. It has also been found that variation of the clensity alone of an acoustic blanket laas very little effect on the propagation constant for the materials.

III. EXPERUMENTAL RESULTS

In Figs. 8-10 the theoretical predictions are compared with data obtained using the modified form of the apparatus described in Fig. 3 of reference 2 . An array of nine speakers, forming an essentially zero acoustic impedance source, transmits sound through an 18×18-inch sample which is terminated by a ρc impedance. The incident and transmitted energy are measured by microphones on opposite sides of the structure under test. The principle modifications to the apparatus consisted

FIG. 9. Difference in decibels between the attenuation provided by the structure shown on the graph and that provided hy the damped metal pasel of density o. These graphs show the difference between theory and measirement
or two typen of siructures with different blanket thicknesses for two types of structures with different blanket thicknesses and air space depths.
in filling the air space between the loudspeakers and the $\left(\sigma_{1}\right)$ panel with an acoustical hlanket in which nine loles equal in diameter to the loudspeaker diameters were cut. Also, absorbing material was placed around the edges of the air space between the (σ_{1}) panel and the blanket, or σ_{4} pinel. These added absorbing materials prevent lateral standitg waves in those spaces, As will be shown later, it is also necessary to use a well-damped panel in the σ_{1} position of Fig. 1 in order that weight-law attenuation will be achieved.

Figure 8 shows a comparison of theory and of measurement for the same material (J. M. Stonefelt) in three different structures. In Fig. 9 there is shown for two structures the effect of changing either the thickness of the absorbing blankets or the depth of the air space. The ordinates of these graphs indicate the increased attentation obtained
over that which would be obtained for the single sheet of dural (σ_{t}) alonc. The agreements are seen to be satisfactory.
In Fig. 10 we show comparisons of calculated and measured data for two structures using three widely different types of materials for the absorbing blankets. In these cases the data were taken by Mr. H. F. Dienelt with the earlier version of the 18×18-inch apparatus. ${ }^{2}$ The agreement between measured and calculated data for Structure V is good. For Structure III, however, systematic differences exist at high frequencies, These systematic differences occur because transverse standing waves in the air space between the pancl and the loudspeakers were not damped out as was the case in the modified form of the apparatus and as was assumed in the theory.

In airplane applications the principal concern is to reduce the high frequency components in the airplane noise. Such reduction improves speech intelligibility and comfort for passengers and crew. A comparison among the five different structures at 1000 and 5000 c . p ,s. are shown in Figs. 11 and 12. It is seen that Structures 111, IV, and V differ little from each other. However, Structures $1 I I$ atid V present an absorbing face to the interior of the cabin which reduces reverberant sound. At both $1000 \mathrm{c}, \mathrm{p}$.s. and 5000 c, p.s. the improvement of Structure IV over Structure III is of the order of

Fig. 10. Difference in decibels between the attenmation provided by the structure slown on the graph und that provided by the damped metal panel of density of, These
graphe show the diffrence betwen theory ind neasitement for faur radically different types of materials in two structures. The हystematic difference between high frequency data and theory for Structure III is explained in the text.

[^43]

Fig. 11. Relative performance at 1000 e,p,s. of Stritctures I-V as a function of specific dyamio rusistance of tho blanket.

Fig. 12. Rehative performatice at 5000 c.p.s, of Structurea I-V as a function of specific dynanic resistance of the blanket.
three decibels. If a mon-absorbent interior finish is permissible because of the existence of rugs and upholstered seats in the cabin, then Structure IV is the best at all frequencies. The relative importance of transmission loss and sound absorption in airplane quuieting naty be understood by study of previous papers. ${ }^{4}$

IV. WEIGHT LAW ATTENUATIONS FOR PANELS

In the basic theory it is assumed that weight law attenuation is obtained for the impervious septa. This assumption requires checking. The attenuation of a series of clural panels with surface densities varying from 0.25 to 5.5 lb ./ $/ \mathrm{ft}{ }^{2}$ was measured in the 18×18-inch apparatus. Out to a frequency of about 1000 c.p.s., each panel appears to follow weiglat law reasonably well above its major resonant Prequency. Above 1000 e.p.s., however, it was soon discovered that for certain surface densities the attenuation is actually less than that for lower surface densities. A curve illustrating this fact for undamped single pancls is shown in Fig. 13. These data are the measured attenuations in db at 3000 c.p.s. ats a function of surface density. The zero on the ordinate refers to the attenuation obtained for the $0.25 \mathrm{lb} . / \mathrm{ft}{ }^{2}$ panel. The attenuation which should be obtained from weight law considerations is given by Eq. (32) and is shown by the straight line of Fig. 13.
Theoretical weight law attenuation

$$
=10 \log _{10}\left[1+(\omega \sigma / \rho c)^{2}\right] \mathrm{db} . \quad \text { (32) }
$$

[^44]'Jishe: I. Transmission loss in db,

Normal Itrelterice 1it, (32)	Normal incideate E: 17. (33)	Ratuloul incldente 18) (32)	Katulam theciderire l: $(4+(313)$	
15.7	10	11.6	5.9	-1. 1
26	20	19.3	13.3	6.7
36	30	27.6	21.6	8.4
46	40	36,4	30.1	9,6
56	50	45.4	30.4	10.0
66	60	51,6	48.6	11.4

At high frequencies, the difference between theory and measurement is of the order of 17 dl .
It should be noted that Eq. (32) differs from the classical formula for weight-law attennation expressed by Eq. (33).
Classical weight haw attenuation

$$
\begin{equation*}
=10 \log _{\mapsto}\left[1+(\omega \sigma / 2 \rho c)^{3}\right](11 \tag{33}
\end{equation*}
$$

The explamation for this difference, is that Eq. (32) gives the ratio (in (1b) of the pressures on the two sides of the panel, while Eq. (33) gives the ratio (in db) of the pressure at a point before and after the panel is inserted between the point and the source. Because, for $(\omega \sigma)^{2} \gg(2 \rho c)^{2}$, pressure doubling occurs when the panel is present, the attenuation is six decibels grenter for Eq, (32) han for Eq. (33),
The devintion from theoretical weight law mentioned in the paragraph preceding the last is attributable to the existence of flexural sound waves traveling in transverse directions in the panel. This conclusion was checked by making the panels highly damped, such that the transverse waves were made ineffective. For the damping, sheets of mica weighing about $0.06 \mathrm{lb}, / \mathrm{ft}, ?$, were cemented to thin aluminum pancls and these panels were then combined to form sandwiches covering a range of densities from 0.25 to $2.5 \mathrm{lb} . / \mathrm{f} .{ }^{2}$, Attennations measured for these pancls were in good agreement with weight law, except at very high frequencies (above $6000 \mathrm{c} . \mathrm{p}$.s.) where the attenmation became somewhat higher than weight law. The results of these tests at 3000 e.p.s. are shown ploted in Fig. 13 as open circles.

V. RANDOM WAVE INCIDENCE

Even when panels are sufficiently dimped so that they follow weight law for normal wave incidence, Loudon ${ }^{6}$ lass shown that the average atternation for random wave incidence is considerably lower than that given by Eqq. (32) and (33). He derives a comparison between the normal and

[^45]ranclom transmission loss values for panels which follow weight law for normal incidence, The results taken directly from his paper are shown in colums 2, 4 and 5 of Table I. Columns 1 and 3 have been added to give attenuation in terms of the ratios of the pressures on the two sides of the panel. That is to say, columns 1 and 2 are direct comparisons of Eqs. (32) and (33) for the same surface density.

vi. office partitions

It is interesting to compare the calculations of this paper with data published by Gorton ${ }^{\text {a }}$ on an office partition composed of two sheets of metal, separated by about three inches, in which an absorbing blanket was introduced. Calculated and measured data for this structure are shown in Fig. 14. A comparative curve correcting for the difference between random and normal sound incidence is shown by the heavy dashed curve in Fig. 14. The corrections of Table I were applied to each panel separately. The difference between the calculated and measured diata of that figure is due, perbaps, to the fact that the edges of the Gorton panels were not vibration isolated from each other. Hence, there was a flanking path through which sound could be transmitted. Further experimentation would seem to le profitable to determine if a significant improvement for that type of demountable panel could be affected, using a difierent type of construction incorporating vibration isolation between the two faces.

vil. conclusions

A study of the graphs and the equations leads to the conclusions:

Fig. 13. Chart illustrating the increase in attumation at 3000 c.p.s. as a function of surface density for damped and undamped metal pamels.
© W. S, Gorton, J. Acous, Soc. Ant. 17, 236 (19.16),
(1) The theory and mensurement of sound transmission through the structures of Figg. 1 are in good agreenent for normal wave incidence.
(2) The charts given in Figs. 2-7 show that for best results at low frequencies the over-all depth of the structure should be as grent as possible.
(3) At high frequencies the absorbing blanket between the two impervious layers, σ_{1} and σ_{n}, removes the resonant peaks and appreciably increases the transmission loss.
(1) When there are no atcoustical blankets (Structure O) the attenuation at low frequencies is that of a simple filter comprised of a series mass σ_{1}, a ghunt condenser ($\left(/ / \rho^{2}\right.$), and a serics mass $\sigma_{\text {, }}$ working into a pe termination. These elements will resonate at some frequency (side Fige, 2) where the attenuation will be substantially less than that of the panel alone, Above that frequency, the attenuation increnses rapidly until the wave-length approaches twice the separation h. When $l=n \lambda / 2$, where n is an integer and λ is the wave-length of the driving frequency, resoname occurs. At the resonance peaks the attenuation is a minimum and is given approximately by the formmat:

$$
\begin{equation*}
\text { Nin, atten. }=10 \log _{10}\left[1+\frac{\omega^{2}\left(\sigma_{1}+\sigma_{*}\right)^{2}}{\rho^{2} c^{2}}\right] \mathrm{db} \tag{3.4}
\end{equation*}
$$

This equation says that at the resonant: peaks, the two panels act as though they are one pancl with a surface density $\left(\sigma_{1}+\sigma_{3}\right)$, Between these resonant peaks the maximum attenuation is given approximately by

Max. atten. $=10 \log _{10}\left[1+\frac{\omega^{2} \sigma_{2}^{2}}{\rho^{2} c^{2}}\right]$

$$
\begin{equation*}
+10 \log \left[1+\frac{\omega^{*} \sigma_{4}^{2}}{\rho^{*} c^{2}}\right] \mathrm{db} \tag{35}
\end{equation*}
$$

(Note that because of the definition of attenuation used the values (for $\omega^{2} \sigma^{2} \gg \rho^{2} c^{2}$) of ench of the logarithmic terms is six decibels higher than that usually given in the literature.) This equation says that at the points of maximum attenuation, the two panels act as though each was terminated by ρc and that their attenuations were lincarly atditive.
(5) With the acoustical blanket in the airspace between the two septa the attenuation at the low frequencies is nearly the same as that withont it, except that the value of the shunt capicitance is increased by about 40 percent because of that change from adiabatic to isothermal compression in the gas (see reference 3). At the high frequencies, the

freoukher in creles per second
Fig. 1.4. Comparison of calculated and measured data on a typical netinl ofice partition. The difierence between metsurempent rand theory at high frequencieti may be due to fankimg
trinsmissiont transmissioll.
maximum attentuations for Structures IV^{\prime} and V are given by the equation:
Mas. atten, =Eq. (35)

$$
\begin{equation*}
+[8.686 \cdot \operatorname{Re}(b) \cdot d]-6 \mathrm{db} \tag{36}
\end{equation*}
$$

where $\operatorname{Re}(b)$ is the real part of the propagation constant of the acoustical blanket, and d is the sum of the thicknesses of the blanket in the structure in cm . The six ch term in Eq, , (36) is included because of pressure rloubling at the interface between the absorbing blanket and the σ, interface layer. This equation says that the effect of the blanket in the airspace is to provide a po termination for the a_{4} panel. Also, it decouples the two panels from each other so that their attenuations are separately additive except for the 6 db pressure doubling term just mentioned. In acldition, there is an attenuation loss in the blanket itself given by the second term in Eq. (36). At these frequencies, the airspace l in Structures IV and V has no effect on the attenaation becaluse the wave araverses the space suffering only a phase shift.
(6) For random wave incidence at high frequencies the values in the fifth column of Table I should be subtracted from the weight law attennation of Eq. (32) for each impervious septum used in the structure.
(7) In the design of office partitions, the panels on the opposite sicles of the partitions should prolsably be vibration isolated to obtain full value from the elements of the structure,
(8) At normal incidence, weight law attenuation
is achieved for thin panels only if they are sufficiently thin or sufliciently damped that flexural waves in the panel are highly attenuated.
(9) These studies suggest that a series of panels of different surface densities made of alternate layers of metal and bonded mica would serve as calculable standards of transmission loss for use in test laboratories,
(10) The agrement between measurement and theory is consistently satisfactory enough that the extension of the 18×18-inch apparatus to the measurement of the transmission loss of large panels is indicated.

viI. AcKNOWLEDGMENT

The authors are deeply indebted to Mida N. Karakashian and Margaret Z. Freeman of the Computation Laboratory at the Massachusetts Institute of Technology for their efforts, extending over the greater part of a year, in converting the equations given in this paper into clarts contained in Figs. 2-7. Without their help the principal conclusions of this paper would not have been possible. The authors also wish to express their appreciation to Mr. Ralph Beatty, who assisted in the preparation of the mamuscript and in checking the equations for accuracy.

Building to the Acoustical Optimum New Mutual-Don Lee Broadcasting Studios

Walter W. Carrutiahs
Studio Division, Don Leo Broadasting system

And
Donatis I'. Lovis
Electrical Kesearch Jroducts Division, Western Electric Company, Hollywiod, Coliforniat
(Received Fetruary 2, 19:9)
The acoustical design and construction of the new Muthal-Don Lee Broadenating Studios in Holly'wood were done under noved and very favorable armagements, First, a careful checle was made of the optinum acoustical claracteristics to which it wis decided to design the stadios. Some of the lost auditorimme for liroadeasting were measured, and from these data as well its comments regarding the excellence and shortcomings of these auditoriuns, the optimum characterigtics for the new studios were determined.
Diring the course of construction, acoustical meanurements were made meveral times for the parpose of "hailor-naking" the acoustical characteristics of the stadios, On the basis of the matauremente, it was found that only a few minor modifications in acoustic treatment were necensary, such as chatngiag the mountings of the Aconsti-Celosex materialy in order to change the low frequency alsorption characteristics an desired, and the areat used of these materials.
The restlts are, close agreement hetween optimum and fatilly metisured acmastical characteristics, and very kitisfactory broadease progroms.

IN contemplating the building of the new MutualDon Lee Broadcasting Studios in Hollywood, California, a design philosophy was developed for producing optimum acoustical characteristics. The design procedure is described herein for the four principal studios, used primarily for large musical broadensts, which is the same general plan followed in the design and construction of the smaller studios.

I. OPTIMUM STUDIO CHARACTERUSTICS

Important considerations under this heading are the answers to the three questions discussed in the following paragraphs.

A. What is the Size Requirement?

The size of a studio should be determined by the type of programs to be broadeast from it. In order
to fulfill the desire of the management for highest quality musical broadeasts, it was necessary to provide larger studios than had previously been in general use. Dr. Stokowski once said "Art is a habit of mind." Since we have usually heard orchestras in halls bearing certain relationships in size to the orchestras playing in them, there is an emotional satisfaction when this effect is reproduced. The quality of the reverberation of a large room is successfully reproduced at the present time only in rooms of commensurate size.
A person listening to a broadcast program requires for realistic enjoyment that the direct sound reach his ear augmented by reverberation characterized by the natural sarroundings. Lack of this effect lessens his ability to vistalize the orchestra. As the number of orchestral instruments is increased in a studio of insufficient volume, the impression of
added orchestral size is notincreased proportionally; however, where the number of instruments is small compared to the volume normally associated with a studio having optimum reverberation, it is possible with proper pick-up to create an effect of numbers in excess of those actually employed. In order to satisfy the acoustical requirements of a symphony orchestra, a volume of 170,000 cubic feet was chosen, in accordance with data regarding optimum size, for each of the four major studios.

B. What is the Optimum Reverberation Characteristic for the Studio?

In 1936, Morris and Nixon' described curves representing optimum reverberation times for broadcasting studios of various sizes. Maxfield, Colledge, and Friebus ${ }^{2}$ described in 1038 a family of optimum reverberation time curves for motion picture scoring stages as shown in Fig. 1, These times are slightly higher than those recommended by Morris and Nixon, ${ }^{\text {p }}$ particularly for small rooms. Potwin's ${ }^{4}$ data, published in 1930, was in agreement with that of Maxfield, Colledge, and Friebus.: In 1947, Gurin and Nixon ${ }^{4}$ reaffirmed the optimum reverberation times of Morris and Nixon. ${ }^{1}$
In order to correlate oljective data with the subjective experiences of management, producers, artists and engineers, some first-hand information was required. In the growing art of broadcasting, the optimum reverberation characteristic for a given room size has been somewhat controversial like most things dealing with the acsthetic. However, on the basis of our most satisfactory listening experiences, programs from certain music halls and studios were generally considered best. The reverberation time frequency characteristics of some of these music halls were measured. There was an unmistakable trend in the results towards higher reverberation times than previously had been considered optimum for broadcasting. An average of these measurements, modified by comments about each relative to desirable changes, became the reverberation characteristic taken as a basis for the design of the new studios.

It is to be noted that the reverberation time frequency characteristic determined from these mensurements to be optimum and shown as the dotted line on Figs. 2 and 4 (plotted to a larger scale on 4), is substantially higher than the broadcast optimum that has been used in years past. For instance, the curves of Fig, 1 indicate that a

[^46]

Fig. 1. Optimum reverberation times for brondcasting,
studio lanving a capacity of 170,000 cubic feet should have a reverberation time of slightly more than 1.1 seconds from 1000 to 4000 c.p.s., and 1.7 seconds at 50 c.p.s. The optimum curve of Fig. 4 indicates that the reverberation time from 1000 to 4000 c.p.s. should be nearly 1.4 seconds, and at 50 c.p.s. approximately 2.4 seconds.
It has been customary in describing optimum reverberation time characteristics to show them to be flat above $1000 \mathrm{c} . \mathrm{p} . \mathrm{s}$. Measurements that have been made of various auditoriums indicate that quite generally the measured reverberation time characteristics slope downward at frequencies above 4000 c.p.s.s. (to 8000 c .p.s.s.). This is attributable not only to the absorption of the acoustical materials on the walls, ceiling, and tloor of the auditoriums, but also to the albsorption of the air which is quite appreciable at high frequencies. Because of the fact that a study of the exact shape of the optimum characteristics at the high frequencies has not been made, within the knowledge of the authors, the optimum curve is not shown above 4000 c.p.s. It is recognized, however, that the most satisfactory auditoriums from which orchestras have been broadenst have characteristics which slope downward at the high frequencies. It is the firm conviction of the authors that an auditorium of the approximate size of the four largest Don Lee stuclios would have an unnaturally sharp and undesirably brilliant characteristic if this downwarif tendency at the high frequencies did not exist.

C. What Factors in Construction are Important for Sound?

It is important in the construction of a studio to eliminate external noise and vibration. To this end, each studio was designed basically as an isolated outer 8 -inch thick conerete enclosure within which was the inner studio of wood construction with dimensions conforming to the optimum ratio 2:3:5. In order to minimize undesirable reflections between walls, the inner walls were angled to avoid parallel

Fig. 2, Studio 1, reverberation titue characteristics.
surfaces, The ceiling and floor surfaces were also made non-parallel.
In order to provide adequate, but avoid excessive, sound diffusion and give room character, the walls and ceiling were alternately treated with different arens of convex and that surfaces, Wood was used on the stage floor, on the carved surfaces of the walls and ceiling and on some of the flat areas in order to provide the riel tomal effects which experience has indicated are obtained by the use of wood.
The studios were designed to have not only optimum acoustical elaracteristies but architectural beauty as well.

II. BUILDING TO THE ACOUSTICAL OPTIMUM CHARACTERISTICS

The next problem was to design the studios to conform to the optimum acoustical characteristics. In earlier buidling history, such an tudertakitug would have been dificult. With the increased information now available regarling the acoustical characteristics of materinls, it is possible to calculate the sound treament for a given studio more accurately than formerly. Because of the lack of information regarding some of the materials, however, the polycylindrical surfaces being one of the materials in particular about which not enough information was aviilable, it was decided to make acoustical mensurements during the course of construetion and make slight adjustments in the acoustical treatment which the measurements might indicate to be desirable. Arrangenents were made in connection with the construction program, to install one type of material at a time as far as practicable, and make acoustic measurements before and after ench installation. The results are a unique family of curves, and tables of acoustic absorption characteristics described below. This "tailor-making" of the acoustical treatment proved to be very valuable in adjusting the acoustical characteristics accurately to the optimum.

In calculating the reverberation time frequency characteristics, it was essential to realize that the polycylindrical surfaces, provided primarity for the
difinsion of the sound, hatl a maximum absorption at a low frequency. These polycylindrical diffusers were constructed of sheet plywood bent over convex forms, The convex forms were made of ribs which were spaced at irregular intervals in order to avoid 'plywood diaphragms of similar sizes, which otherwise would vibrate at frequencies within a narrow band, and therely produce undesirable resonance vibration effects. The panels were damped by means of a Celotex lining. In acldition, the seats, carpet, Irapes, and acoustical treatment, all were considered carefully' in the calculation of the acoustical characteristies of the studios.
Acousti-Celotex was chosen as ache acoustic treatment because of the wide variety of acoustical characteristics available with different: thicknesses and mountings, and because of the fact that these materials cem be painted with oil paints or otherwise redecorated without impairing the acoustical characteristics, Arrangements were made in connection with the design of the studios to make changes in the Aconsti-Celotex during the course of construction, if the acoustic meastrements indicated minor modifications to be desirable. Changes in the type of Acousti-Celotex and its mounting (directly against hard surfaces or on furting strips either $12^{\prime \prime}$ or $24^{\prime \prime}$ apart) were contemplated, Under these conditions, the absorption frequency charracteristic, at the low frequencies in particular, could be varied over wide limits.

III. ACOUSTIC MEASUREMENTS AND CONSTRUCTION

The following is an essentially chronological account of the meastrements made in Studio 1 .
December 30.-The studio consisted of a concrete shell with a rough wooden roof (see Fig, 3). The reverberation time varied from 7.4 seconds at 50 c.p.s. to 1.6 seconds at 8000 c.p.s.s. (see Fig. 2).

March 88 .-The installation of the polycylindrical surfaces on the ceiling and walls was complete, and the entire installation of the ceiling was finished,

Fig. 3. Picture of Studio 1, at the tine of the first measurements, December 30, 19.47.

Fig. 4. Studio 1, reverberation time chameteristics.
with Acousti-Celotex or other materials installed in strips between the polycylindrical diffusers. The reverberation time at 50 c.p.s. was reduced from 7.4 to 2.8 seconds (see Fig. 2), Above 2000 e.p.s.s. the absorption was increased only a small amount, The absorption at the low frequencies was attributable largely to panel vibration of the polycylindrical and flat surfaces of the inner walls of the stage and audience section.

It was decided at this time, as a result of a study of the measurements, to install the remainder of the Acousti-Celotex directly in contact with the hard wall surfaces instead of on furring strips. The purpose of this change was to reduce the absorption of the Acousti-Celotex to a minimum at the low frequencies.

March 25.-The Acousti-Celotex installation on the walls was complete. The mid-range frequency absorption was increased in particular. The low frequency absorprion was little changed, as was desirable (see Fig. 2).
April 16.-The construction of the wood floor of the stage was complete. There were no undesirable resonance vibrations of the floor to change the smoothness of the reverberation time frequency characteristic. This had been accomplished in particular by putting extra stringers between some of the wood floor supports, which caused the natural vibration frequencies of the floor, therefore, to be variect as is clesirable.
The reverberation tine under these conditions was slightly greater than during the previous measurements, largely because of the removal of the building paper that had covered the floor of the audience section and the removal of the AcoustiCelotex that had previotsly been stored in cartons on the stage. The doors had been hung and were closect.

April 23.-The sents had been installed in the audience section. The absorption of the seats reduced the reverberation times substantially at the low as well as the mid-range and high frequencies (see Fig. 4). Reverberation chamber measurements of the seats during the planing

Fig. 5, Studin 1, reverberation time characteristics with klige drapes open and closed.
period had indicated good absorption over the entire frequency range.
May 5.-Ozite lined carpet had heen installed in the audience section. In order to avoid absorption at the low frequencies as completely as practicable, as previous measurements had indicated to be desirable, a single rather than double thickness of carpet lining was used. This produced the desired results (see Fig. 4).

It is to be noted that above 5000 c.p.s. the reverberation time was higher than during the previous measurements. These data were rechecked and the effeet was found to be a real one, undoubtedly attributable to higher humidity conditions during the latter measurements, which would result in less high frequency air attenuation, Such conditions will not recur in these studios due to the operation of the humidity control equipment, the installation of which had not been completed at the time of these measurements.
June 17.-The windows in the monitor and client's bootls, and four heavy drapes as well as a strip of earpet on the stage, had been installed prior to these measurements. The measurements were made with the two rear drapes open, and also closed so as to shut off the rear portion of the stage. The upper curve of Fig. 5 indicates that with the drapes open, the reverberation time characteristic was above optimum over the frequency range from

Fifi. 6. Stuctio $I_{\text {a }}$ reverberation time characteristics affer completion, Junc $30,19.48$.

Fic. 7. Picture of Studio 1, after completion, June 30, 19.48, taken from the rear of the atadience section.

200 to 3000 e.p.s. With the drapes closed, the characteristic coincided almost exactly with the optimum over the range from 200 to 2000 e.p.s.

Jwne 30.-Acousti-Celotex had been installed on two additional pancls of the stage to complete Studio 1. The fimal measurements, made with the drapes open, are in close agreement with the optimum characteristic (gee Fig. 6). Two pictures of the completed stutio are shown as Figs. 7 and 8.

The measurements, represented by the characteristic of Fig. 6, were made in three groups. First, the loudspenker and the microphone were each placed in five different positions on the stage. The average of these meastrements is shown as the heavy line of Fig. g. Next, the loudspeaker and microphone were each phaced in live different positions in the audience section. The average of these measurements is shown on the same figure as the dotted line. Next, the loudspeaker wis placed in five different positions on the stage and the mierophone in five different positions in the audience section. The average of these measurements is shown as the light solid line on the same figure. In making practically all the reverberation time measurements referred to in this article, the loudspeaker and microphone were each placed in ten different locations as far apart as praticable. The characteristic curves are the average of ten sets of data in practically every case.
Measurements were made June 30 of Studio 2, which had been designed to be practically the same as Studio 1. This characteristic is shown as the solid curved line of Fig. 10. Measurements had been made in Studio 2 previously, which were in good agreement with the corresponding measurements that had been made in Studio 1 at essentially the same stage of completion. Studio 3 was measured August 17, the results of which are shown as the dotted curved line of the same figure. The characteristic of Studio 4, August 4, 1948, is shown as the dot dasled curved line. The characteristics of

Fig. 8. Pieture of Studio 1, after completion, June 30,1948 taken from the stage.
these three studios are essentially alike and are in goot agreement with Studio 1 and the optimum.

IV. ACOUSTIC ABSORPTION CHARACTERISTICS

At the time that the Don Lee Studios were designed, less was known about the acoustic absorption frequency characteristics of polycylindrical diffusers than most of the other materials used in the studio construction. This was one of the most important materials about which information was required becatse of the relatively large areas in the studios. Two other important parts of Studio 1 equipment were the 350 deeply cushioned theater seats, and the carpet. From the acoustic measurements made in the studio before and after the instaltation of the polycylindrical diffusers, before and after the installation of the Acousti-Celotex on the walls, before and after the installation of the seats, and before and after the installation of the carpet, the alsorption frequency characteristics have been calculated. These materials were measured in this instance under the conditions of use rather that under the umatural conditions of the reverberation chamber. These measurements, therefore, are of the absorption contributed by these

Fig. 9. Stutio 1 , reverberation time characteristics after completion, Jume 30,1948 , measured with the loudsperker and microphone in various locations on the stage and in the audience section.

-	Frequency dn cyclea ner secund	Absarption coofliclenta In percent
	50	27
	60	31
\therefore	80	24
:	100	2.3
\therefore	125	23
	250	17
!	500	10
	1000	8
\because	2000	2
\cdots	3000	6
:	4000	7

materials to the acoustical characteristics of the studio.

A. Polycylindrical Diffusers

The first measurements of Studio 1 were made December 30,1947, when it was virtually a conerete shell. The characteristic is shown on Fig. 2, and the Studio is pictured as Fig, 3, The next mensurements were made March 18, 1948, after all of the polycylindrical diffusers had been installed on the ceiling and walls, and the Acousti-Celotex acoustic treatmest had been installed on the stage eciling. From these clata, logether with the information obtained regarding the absorption frequency characteristic of the Acousti-Celotex, the characteristic of the polycylindrical diffusers was calculated. This is shown in Table I. It will be noted that the peak absorption of 31 percent was obtained at a frequency of 60 c.p.s., and that the absorption averaged about 8 percent above 125 c.p.s.

B. Acoustl-Celotex

The next major change made was the addition of the Acousti-Celotex acoustic treatment to the walls. Almost exactly equal areas of $\frac{1^{\prime \prime}}{}$ thick and $1 \frac{1}{\frac{1}{2}^{\prime \prime}}$ thick Acousti-Celotex were installed between the measurements of March 18 and March 25, 1948. Both of these measured characteristics are shown on Fig. 2. From these data, the average absorption coefficients at the various frequencies for the two types of Acousti-Celotes were calculated. The

Fig. 10. Reverberation time characteristics of Studios 2,3 , int 4 , following completion.

Tamse IV. Acousti-Celotex $\}^{\prime \prime}$ and $11^{\prime \prime}$ (equal areas) nerewed to Aconsti-Lock board. Studio 1. Cillendaterl average absorption cocflicients.

Fircmanicy in cycley [kT imentil!		abiworntion coer in perceat $7^{\prime \prime}$ sematiCelorex acremest to A-I, iseard	dents	conficlernit on Cetoter culculated from reverberation measifrimenia
125	9	1.4	12	26
2.50	15	42	29	37
500	61	99	80	71
1000	77	74	76	75
2000	70	60	6.5	72
30000				58
1000	6.4	50	57	51

results are given in 'Table II. It will be noted that the principal differences between the Average $A M A$, coefficients and those calculated from the measurements, are that the later are higher at 125 and 250 c.p.s. and lower in value at 500 c.p.s.

C. Seats

The seats were installed letween the acoustic measurements made April 16 and April 23 in Studio 1 (Fig. 4). From these data, the absorption frequency characteristic of the 350 seats was determined. These coefficients are compared in Table III to those determined in a reverberation chamber prior to the construction of the studios. It is to be noted that the low frequency absorption of the seats, measured after installation in the studio, is higher than the absorption is measured in the reverberation clamber; and that the absorption at the high frequencies is lower as mensured in the stuclio.

D. Carpet

The carpet was installed in Stutio 1 between the acoustic mensurements of April 23 and May 5 (Fig. 4). It had been determined prior to the installation of the carpet that a minimum low frequency absorption was desired from the carper, in order to malie the studin characteristic conform closely to the optimum. The carpet lining was, therefore, limited to one thickness of material. The calculated alusorption frequency characteristic of the lined carpet is shown in Table IV. It is to be noted that the carpet absorption is less than 30 percent below $1000 \mathrm{c} . \mathrm{p}$.s. The absorption reaches its maximum value of 50 percent at $3000 \mathrm{c} . \mathrm{p}, \mathrm{s}$.

v. CONCLUSIONS

In the design and construction of the new MutualDon Lee Broadensting Studios, the desired studio characteristics were first determined by means of measurements of some of the auditoriums which broadeasting experience indicated to be best. Next, the new studio acoustical characteristics were

TAal.: III, Sears Studio I calculated absorption.

Firequepacy du cyeien ner wecoms		Absurntion in unts meantrex in Studin:
125	2.3	3.0
250	2.4	3.7
500	2.7	3.4
1000	3.3	3.1
2000	3.2	2.7
3000	3,2	3.0
4000	4.5	3.1

"tailor-made" to the desired charneteristics by means of acoustic mensurements made at intervals cluring construction, and by minor adjustments in the acoustic treatment indicated to be desirable by these measurements. The results were close agreement of the final elaracteristics of the studios to the optimum. Furthermore, the design optimum was found to be a more reverberant characteristic than had been in general use,

TAhere IV, Carpet Studio I calculated absorption coefficients.

Frenuracy to cycles per secunt	Abarptom cenficicienta in percent
12.5	11
250	1.5
500	26
1000	36
2000	36
3000	50
. 1000	31

The results that have been obtained, including comments of managenent, artists and radio listeners, particularly regarding orclestra broadcasts, have been very excellent, It is realized, however, that it may take some time for studios of this type to gain general acceptance. It is expected as experience is gained in the the of the Don lee Studios, that addlitional information will be obtained which will lead to the preparation of a supplementary article.

Erratum: On Diffraction through a Circular Aperture

Jоим iv. Muns
Department of Rupinervint, Uninersity of Catifornin, [J. Acota, Soc. Ant. 21. 140 (19.10)
W ITH reference to our recent Letter to the Editor, Dr. Harold Levine of Harvard University has pointel out to us that the variational principle, when applied to the static field in the aperture, is exact through terms of order (kili) ${ }^{\text {and }}$ ad not "virtually exact," as we stated. Our arithatetic was in error, and the coefficient of the term $(\mathrm{kn})=\mathrm{in}$ the transmixsion coefficient should have been

$$
\left(4 / 9-4 / \pi^{2}\right)=0.0 .03915971
$$

which is equivalent to Bouwkamp's figure of 0,039 t 60 to the whine numbler of siguificant figures. In athlition, Eq. \cdot (B) in reference 1 , should have reald

$$
T / T_{0}=R=G\left(G^{2}+B^{y}\right)^{-1}
$$

Erratum: Adaptation of the Ear to Sound Stimulil
E. Luscirier and J. zwishocet Haste, Suiburfand
[J. Acoula, Soc. Am, 21,135 (1949)]
MI ILLISI:CONDS, not miscroseconly, Throughout this paper, the unit of time is the millsecond, which through error was abbreviated as μ sce.

Letter to the Editor

Noise

Ralivi Mahtin McGuatis
Hotwhorme Works, Western Electric Campany, Chicato, Winois
April 2, 10.4
Permit me to join with Mr. Frank Massit in urging that more time in the meetings and more sipace in the Journal be devoted to the "applied" phases of the fietd. The coming meeting in Now York is scheduling papers ander the heading "Acoustics in Safety and Comfort" and I am sure, after reading over the abstracts of the papers that will be presented. that only the surface will be serateled. I am interested in the effects of noise on human beings and I wotild like to hear papers on what the limits of satety are for industrial exposures, what the effect of noise is on labor turnover, quality of product, and absentecism. I am interested in what practical steps can and absentecistr. I ant interested im what practical steps can
be taken to correct adverse environmental conditions. I an in-
teresterl in actual rulings by industrial commissions on chaims made for hearing losses; in the type of legislation that sloould be enacted, and in the viewpoint of habor and management toward the "noise" problem. I an interested in noise level measturement and the hearing atenity measurenent of the individual. I am interested in standards of comfort as well ins ammyance and what can be done to increase the comfort of workers and reduce he "ihreat" to his safety.
In my opinion fully hailf of the program at our meetings shoukl be devoted to the "applied" phaises of the fiedt. In this way we can tearn how others are atacking the problems with which we in industry live day after day. is I see it, the indusirial noise problem is one of the most unexplored fiedds in acoustics.

Acoustical Society News

Dates of Future Mestings of the Acoustical Society

The following dates have been set for meetings of the Acoustical Society and Chairmen of the Program committees have been appointed:

Novenber 17-10, 1948, St, Louis, Missouri. Chaiman: Propresson Kibron C. Mokrical, Washington University, St. Louis, Missouri.

June 22-24, 1950, State College, Pennsylvania. Chairman: Profissor Harous K. Schaning, The Pennsylvania State College, State College, Penasylvania,

November 9-1t, 1050, M,I.T., Cambridge, Massachusetts, Chairman: Provessor Richand Hi. Bolt, Massachusetts Institute of Technology, Canuridge, Massachusetts.

Spring 1951, Allautic City, N, J. Chairman: Du, liakry F. OLson, RCA Laboratories, I'rinceton, New Jersey.

Fall 1951, Chicago, Illimis, Charman: Dr. Hale J. Samene, The Celotex Corporation, Chicago 3 , Iltinois, This will be a joint meeting with the other soccieties of the Anerican Institute of Physics.

Cumulative Index to Volumes 11-20

In 1939 the Acoustical Society published a Cumulative Index to Volumes $1-10$ covering all papere which hat appleared in our Journal from 1929 to 1939 as well as the contemporary papers in other journals from 19,37 to 1939. These were chassified atecording to stilyetet and into indexed accorling to chassified ateordide to sthbetet and inso mimexed accorting to but copies are still available at tho Anverican Institute of lhysics at S.1.50.

It hard been the plan to extrapolate hate exprerience and to pulbish a similar cumulative indes covering the next ten volames. This turned out to be a very sations fimancial problem. The fied of acoustics had becone very active during the periorl, the number of tilles of acoustical papers compiled from other jourmils had vastly madtiplied, the reviewing of acosistical patents had been starierl, and the Journal itself was publishing an increasing rumber of papers per year. It was reluctantly decided tinat the Cumulative Index would have to be ahamoned for fimancial rensons.

Meantime, however, the ONR had made plans to support the preparation of a bibliogmphy of aconstics. By good fortune the plans of ench group became known to the other. Innsmuch as the Journal of the Acouslical Socicty of America was the only jourmal devoled to aconstics which hat been publishetd throughnut the entire period from 1939 to 19.88 and, since this journal had already prepared references to acoutatical literature appearing elsewhere and to acomstical patents, it was conclufed that the comulative index of this material woutd meet the needs of the ONR. Compilation of this material into inteprated lists has therefore been supported hy ONR contract.

The new Cumulative Index to Volumes $11-20,1039-1918$ is a volume of approximately 500 pages covering papers in our own Journal, contenporary literature from other journals, and patents. These nre classified separately according to subject and again by nuthor or inventor. This very useful volume has been mate possibte by the miny hours of hard work during the past ten-year period by hose members of the Society who have compiled the material, namely, Arthor Taber Jones, Floyd A. Firestone, Herbert A, Erf, and Robert W. Young and his staff of eleven patent reviewers whose names are listed in the Index itself.

This new Cumulative Index is being sent free of charge to all members of the Acoustical Society, Others may oblain copies by sending $\$ 5.00$ to the American lintitule of Plysies, 57 East 55 th Street, New York 22, New York,

Results of Questionnaire on Journal Policy

The advice of the Society membership was sough last year in a questionnaire deaigned to assist the officers and the Execttive Councit in determining a suitable publication policy in the face of rising publication costs and continuing shortage of paper. Over 480 replies were recelved representing more than one-third of the total Society membership. The check lists on "reconmended action" and "desree of interest" were diligently executed, and a large number of cogent suggestions were received on the questionnaire and in forwarding letters. A brief statistical amalysis of the check lists, with due respect for correlation coeficients and power spectrib, suggested that more value would accrue from a detaited study of the appended comments and suggestions, The statiatics, however, provided a validating confirnation of the conclusions drawn from the verbal discussions,
The replies were gratifying and informative, The constructive criticisms and suggestions are proving useful in giving guictance to the members of the Connci, and a number of the sugestions have already been incorporated in the Journal.
A stricter editorial policy is now being followed and contintial scrutiny given to matters of layout nud wize of cuts. The new "Suggestions to Authors" on the inside front cover encourages practices that aid editorial economy. Unnecessary duplications and verbosity are to be cliscouraged. Alhough the Editorint Board looks for a high standird of material, it will not reject papers of real interest to the Society in the interests of economy.
Space will soon be baved by placing the Table of Contents on the lack cover, where it is really easier to thes. Arrangements have been mate to reduce the number of batents reviewed and the number of figures reproduced. The guestionmaire replies emplasized that too many of the patents listed are simply gadgets and not of scientific interest; that information appears too late to be of much use to the patent minded; and that persons really interested in such matters obtain the patent bulfetins directly. Other frequently expresecd opiniona, which are under consideration, include ruduction of papers which describe only facilities and not research as such; reduction of material on musical instruments (with a fow notable objectors); and reduction of material from contract-sponsored work that is given fully elsewhere.
Several pointed out the need for more Sustaining Membershlips, an arrangement that is mutually beneficial to the Society and to the Sustaining Member.
A vary wide range of interests and opinions was brought out by the questionnaire; this is a mataral outcome of the
liroatl scope of the Sociely's activities and the wide ranse of subject matter encompassed by the fied of aconitics.
In sumanary, it was clear that most readers like the Jotrmal and would bu willing to pay more if necessary to maintain a ligh standard of well presented articles, At the sime time, many useful suggestions for economy were given and are being pat into practice.
The ansistarce of Avis M. Clarke in analyzing and reporting the results of the questionnaire is gratefuliy acknowledged. Richarb hi. Bolt

Certificate of Appreciation to Dr. Hallowell Davis

A Certificate of Appreciation was recently awarded to Dr. Hallowell Divis "for mutstanding contribution to the work of the Ofice of Scientific Research and Development during Wortd War II," Dr. Davis is Director of Researeh at Central Institute for the Deaf, and Professor of Physiology and Researel Professor of Otolaryugology at Washington University in St. Lolis.

Dr. L. L. Beranek to Lecture on Acoustics at the University of Buenos Aires
Dr. Leo L. Beranek Jas accepted a teaching position as lecturer in acoustics at the Instituto Rodintecrico of the University of Buens Aires for a thres-month term this summer. The Instinuto Radiotecnico has been in existence as a division of the University of Buenos Aires for five years and they are now attempting to expand their curriculum to include grodmate work. Dr. Beranek is being asked to organize a course in acoustics that will he carried on by the school after he lenves, He also will be expected to render assistance in the setting up of a general poit-gradtate cosurse in radio communications.

Death of Dr. Edward B. Stephenson
Dr. Edward B. Stephenson, Superintendent of the Mechanics Division of the Naval Rescarch Laboratory, died Friday, May 6, at the age of 67, in San Francigco. Dr, noll Mrs. Stephenson were visiting their son, in that city, following Dr. Stephenson's participation at the All Navy Laboratories Conference at the Navy Electronics Lahoratory in San Diego, where he was chairman and discussion leader of the prograll entided "Educational Programs in Navy Laboratories."
Dr. Stephenson came to NRL. in 1924. He served ns Associate Superintendent of the Sound Division until 1948 when he hecatme the first head of the newly established Mechanics Division, While in the Sound Division, Dr. Steplenson was responsible for the research undertaken on Sularquaeous System of Artillery Fire Control and the Virtual Target for Underwater Sound Filoo Ranging; he leld the patent rights for both. In 1931 le received the Navy Department's Bene-

ficial Award of $\$ 2000$ (one of the highest monetary awarcls given by the Navy) for research in "Quartz Crystals." In addition to his research, Dr. Stephenson took a very active interest in administrative activitics. In 1945, he received the Meritorions Civilian Service Award for outatanding service to the Navy, Ifis citation read as follows:

 mud orientathat of new pernontiel to lat work,
made powable eflicient yervice to the Filet.
For many years, lee servel as Chairman of the NRL Efficiency Rationg Committee and was Problem Secretary of the NRL. Scientific Program Doard, He helped organize the Civil Service Board of Examiners for Scientific and Techanical Persomed in the Potomac River Naval Command, He served on the MIT Commitee on Thesis Accrediting and was a member of the Nave Alvisory Conumittee for Scientific Personnel.
Before coming to the Laboratory, Dr. Stephenson was a Physicist in the Office of the Chief of Eugineers in the War Department; during World War I he served as a Major in the Engineer Corps of the U. S. Army. A former college professor, Dr. Stephenson taught at Knox College (where he received his B.S. ath M.S. in Physics) ior several years, at the University of Illinois (where he received his doctorate), and at the University of North Dakota. In 19.43 his alma mater, Gitux College, donored him with the honorary degree: of Doctor of Science.
Dr. Stephenson presented many scientific papers to various scientific and techmical societies and was frequently invited as speaker at many national and international meetings; he wals a member of the American Physical Society, the American Association for the Advancement of Science, the Aconstical Society of America, the Geophysical Union, the lMilosophical Society of Washington, the Cosmos Club, and Phi Beta Kappa, Sigma Xi, Phi Delta Theta, Gamma Alpha fraternities, The most recent occasions when he represented the Laboratory
at international meetings were in Aupust 19.48 when be attended the Intermational Union of Geodosy and Geophysics in Oslo and in Septenher 19.18 when he attended the International Congress of Applied Mlechanies in Jontlon,
Born in Sparta, Illinois, on Jamaary 10, 1882, Dr. Stephemson spent most of his early career in the midwest that ho loved so dcarly, and was very prond that he was a "farm hoy." He will be long remembered not only for his scientific contributions and achievements, but also for his wholehearted buman relationslips. Of him, it ean truly be said:

$$
\begin{aligned}
& \text { lie way helpfal, not batrountide }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ife was cenffitent, not dakenatic,' }
\end{aligned}
$$

Chicago Acoustical and Audio Group

Tins is writen to describe brielly the history of the Chicigo Aconstical antl Auclio Group. About two years ago a group of acoustical and andio men in this area agreed that the A.S.A. and the I.R.E. were not in a position to satisfy their desire for lecal activity in their felde of enteavor. A technical society was discussed and initial organizational meetings were hed. One of the persons who devoted much effort to the formation of the seciety was Dr. Vincent Salmon. He was the original president pro tem but in January, 1919, left the Chicago area for the West Coast.
Formal meetings with speakers cammenced in October, 1948, and continued moathly. A constitution was accepted at the February, 1949, meding, Au important part of the conbitution was the provision of means to become affiliated with a bociety sulth as those mentioned above when the member* ship so desired. With the acceptance of a constitution, forr officers and three members of the executive council were elected, the seven then constitnting the executive council. These are: Presilent: H. C. Hakdy, Vice President; J. S, Bovers, Treasurer; S. J. Juspman, Secretary: G. L. Bonvalletr.
Remaintry Executive Council Members: II. J. Sabrare, for 3 years; R, E. Sasumbson, for 2 years; M. A. Smits, for 1 year. An annual meeting was held in May, 194).
Under the original president pro ten, the above officers, and a large number of interested and hard-working enthissiasts who became members, the program for its first year was found to have been very satisfying in content and also to have set a high precedent. The program for the approaching year is now being formalated and appears interesting and beneficial. We hope to achieve the parpose of the society which is to foster within the Chicago area the difitsion and increase of the scientific and engineering knowledge of acousitics and audio engineering, and to encourage the interclatage of ideas and the promotion of high professional standards among its members.

New Associates

Wayne A. Beaverson, Electro-Voice, Inc., Buchanan, Michigan Robert W. Benson, 10 Faculty Lane, St. Louis 5, Missouri Robert W. Carr, 2020 Jbarliang Street, Chicago If, Illinois (Shure Broduers, Inc. 225 WV . Huron, Clicabo, IItinois)

Cassius M, Clay, Jr., Room 509, MIT Graduate Ionse, Cinmbridge 39, Massuchutells
Kenneth S. Cook, Deparament if lihynies, University of Connecticut, Storrs, Comnercicut
Edwin A. Deane, 1156 Constance Street, Pasadena 5, California (Westerty 'Trundeata Sireptomycin Dibloratory, Olive View, Califormia)
Percy W. Gatz, 73 Miles Avenue, Great Jills, Staten Islamd 8, New York (Tenclaters College, Columbia University, New York, New York)
Kobert M. Hoover, Ordmance Reswarch Lalmatory, 1' O. Box 30, State Coflege, 1ennsy)
Kenneth R. Latrson, IJ. S. Gypsum Company, 1253 West Diversey I'arkway, Clicago I.f, Illindis
Edred T. Marsh, 281 W. Bahley Road, Iherea, Ohio (NiCA, Clevedand Airport, Cleveland, Ohio)
David Mintzor, Acoustics Laboratory, Massiclusetts Inati-
tute of Techonology, Candriclje 39, Atassachasetts
Liothel O. Sclott, Detl Telephone Liblsonatories, Murny Ilill, New Jersey
William M. Seeley, Jr., 733 Craig Avemus, Lat Cilmada, California

Martin I. Sperber, 9507 Euclid Avenue, Cleveland 6, Ohits
Glem E. I'isdahe, 915 Westover Road, Wilmington 79, Delaware
Vietor 'lwersky, 1244 Lincolı Pace, Broaklyn 13, New York George I. Wakefield, The IV, W. Wakefelil I3rass Company, Vermilion, Ohio
Willium 'l'. Watkins, The Jhmpshire Corporation, P, O. Wox 82, Kannoke, Virginjia
Lotis Zernow, Batlistic Researeh Jaborntorien, Abertuen I'roving Ground, Aberdent, Maryland
Kcinstated Members: Jolin W. Brocks, Guy S. Cook, Mareas 12, Tarrant
Resigned: Reuel S. Aford, R. D. Mugg, Douglas F. Winuck, Members
Deceased: Edwis II, Colpitts, Fellow, Walter F, Sinitl, Jr., Miember

Fellows	207
Members	1036
Associntes	185
Tutal Membership	1428

THE JOUKNAL OF TIL ACOUSTICAI, SOCIETY OF AMERICA

Current Publications on Acoustics

F, A, Filestona
3318 Fessenden Sireet, NIV, Washington S. D. C.

Book Reviews

Carillon. Arthur Lunds Bugedow, pp. 91+xiv, Princeton University I'ress, Iriaceton, New Jersey, 19.48. Price $\$ 2.00$.
The author of this book is the Beth-Alaster nt Princeton University, ancl the hook was writuen because endundastic visitors to the lrinceton carillon often ask about the carillon ant about bells in general. 'l'he book serves admirably its purpose of providiag a stanght forward and interesting acconnt purpose of providiag a stmigheforwardand interesting accomat
of belf and the possibility of bell music, and it wild be read of belfand the possibility of bell music, and it will be read
with ploastre by many persons beside those who hear the with ploastre by many persons beside those who hear the
Princelon carillon. 'lhere are three chaters. The first tells Princelon carillon. I'here are three chapters. The first tells
the hlatory of the lrimecton catillon. The seconel deals with the hlatory of the lrinceton catillon. The second deals with
the origin and development of leds and carillons. The third is the origin and developnent of bells and cariblons. The third is on the carillon in America.

Ar. Digelow defines a carillon as "An instrument comprising at least two octaven of fixed cub-shateded bolls arranged in chronatic series and so tuned as to prodtuce, when many such bellsare sotmeded together, concordant harmony. It is normally played from a keyloard which costrols expression through pariation of touch." 'lhis is the defintion adopted at the Sixth Congress of the Carillon Gujd, faeldat Drimetot in 1946 . Sixth Congress of the Caribon Golidd, fuld at Princeton in 1046 .
Thus a carillon requires bells in which die partial tones of one Thus a carillon reduiges bells in which the partial tones of one
do not jangle with those of another that is henrd at dhe same time, and the carillomener must develop the art of making usie of these belle in auch a way as to take into account strong partial tomes, and must combine the bells in such a way as to obtain effects that are musical. No mere reproduction of harmonies that were written for other instrumbents is adequate,

Mr. Bigelow sketches the history of the varying shapes of leells, from the time of Nimeveh and Babyion, through Roman tintimabula and early Irisi bells, to the thirteenth century, and then to the fifterenth century and more modern bells,
la the entillan at l'rinceton there are forty-nine belfa, and the clavier is in an unusually matisfactory location-close to all the bells, above the larger ones and below the samaller. For the larger bells the action in of the Ditely "brock" or "breeshes" type, ami for the smaller it is of the Flemish "tulmedar" or "tumbler" iype. These two types of action are exphained clearly with the aid of excellent diagrams, During the war the frinceton cariflon was enlarged to its present size lay the addition of twelve inmall helds. With fomatries at fome and abroad converted for war, it becanse necessary far Mr. Bigelow himself net only to find metal for the additional hefle, but alse to cast and ture them. Healready had a wide under: standing of such matiers, but he can fardly fave carried through this work withont learning mach while doing it. In fact, lae states that there arte probiblly not more than six or seven men living who are capable of tuming satisfactorify the bells of a carillon.

As to the pleatite ant batisfaction to be derived from a carillon Mr. Jigelow poisti out that the number of bells "is in itself no criterion of its musical cpualities or of the amonnt of pleasure to he derived from it. Some smatler sets of two or three octaves may charm the listener as much as carillons twice their size. There is, lowever, a limit to the type of music which may be played on a smaller instrument." On a carillen
with a larger number of bells it is, however, possible to "achiuve effects through scales and exiestsive arpegeios whiclı a smaller instrment cannot produce,"
The book is entriched by twelve piges of photographes, and by some information abont fifty-eight carilions in this contery and eight in Canada, It is a book that every one who takes any interest in bedes will wint to read.

Arthur Tailer Jones
Smith College,
Northampton, Massachusetls

Proposed American Standard Acoustical Terminology, Fobruary 1949. American Standards Association, 70 East 45 th Street, New York 17, N. Y. Price \$1,00.
The new trial edition of the proposed revision of the 10.42 Standard Acoustical 'lerminology was prepired under the sponsorship of the Acoustical Society of America with special sponsorship of the Acoustical Society of America with special
cooperation of the Instituic of Radio Engincers, Inc. As incooperation of the Institute of Radio Engincers, Inc. As in-
dicated in the foreword, this edition is issued for trial and study for a period of six months, after which it will be proposed for adoption as an Ancrican Standard widh whatever corrections the trial has indicated.

A comparison of the new proposed stanlard with the 19.42 standard shows that it has over five hundred definitions conpared to about one hundred and fifty. The jnercitse is largely pared to about one hundred and fifty, The jucreise is largely
in six new sections reflecting recent scjentific developmenth. These are: Ultranonics, Recording and Reproducing, Underwater Sound, Gental Acoustical Instruments, Sloock autl Vibmation. New material is also included in the six sectionsGeneral, Architecinral Aconstics, Hearing, Sonnd Transmission, Jransmission Systems, and Music-which appeared in the earlier version,

Many of the definitions in the earlier edition have been revised to conform with the results of rescarches made duriug
the intervening busy seven years, As int exmmple, major changes appear in the concept and methanl of specification of Articulation and Jnteldigibility. Thene are now recognized as Articulation and Inteldigilitity. Thene are now recognized as
being less definiteand more intimately tied in with the nuthod being less definite and more intimately tied in with the method
of masurement. 'the new defintions inaticate more exactly what factors must be specified.
The basic principles followed in the new version are exsentially the salle as for the older version, Multiple meanings for a term have gentrally been avoided, and each definition is as complete at possible, using only words found in at stantard dictionary except where specific reference is made to anotlats term within the fossing. I'o make the standard more usefu] to nonspecialists many of the terms have, in addition to an accurate statement of the meaning, explatatory jaragraphs in the form of noteg containitg baelogromed material and diseussinn. Twn atditional tables atso appear in this isate: one at talde on Standard Watter Conditions listing We velocity of sount, the dergity and the aconstical impedance of fresh arul sea water as a function of salinity and temperature; and the second a table of conversion factors for the present acolsstical units anal the mkes units.
This standart shondd have widesporatd value to all persons interester in acoustics and allied folds. It gives the specificafon writer, the manufacturer, the research worker, the fied warker int the cuntomer a conmon language which is at once accurate and yet simple compared to that in many other technical fields. Few foreign words anul few "coined" words appenr which wondel mar the feeling of understanding in discussions between the ofecialist and the less teclanical person.

The propased standard shonld be carefully studied by all mersans interested in acoustics in order to locate all errors so that these can be corrected in the final edition. .
C. F. Whanuscit
Hell Fiephone Laboratories,

Hell Telephone Laboritor
Ifaryy Jill, New Jersey

References to Contemporary Papers on Acoustics

Amthur Taner Jones
Smilh College, Northamptoh, Mrassachusttts
TN most of the following referenees the nume of a journal is followed by the volume number, in black face, then the page reference, and lastly, in parentheses, the date. Where refercuce is made to abstract journals which number their abstracts the abstract number is given instead of a page raference. A bstracts in A mades des Thficommmoications arn in French, and in Physikalische Berichte are in German. NIosi of the other abstritts to which reference is given are in English. The ablerecuations for the mames of journals follow those :ustd in the I'orld lisi of Scientific Jeriodicals. The numbers to the left of the refercures are thast
 The number at the right, at the end of each reference, designates that particular reference.

Compiled from tarious somers, including the Jndex to Current Technical Literature prepared by the Librarian of the Well Telephone Laboratories.

Cumblative: Inbrates

Cumalative Index, Vols. 1-10, 1929-39, J.A.S. A. Contemporary Literattre, 1937-39, Classitied by subject ast indexed by author. 131 pages, S4.50.
Cinnalarive Index, Vols, $11-20,1939-48$. J.A.S.A., Contemporary Literature, and Patents. Classified by subject and indexed by author and inventor, About 500 patges, $\$ 5,00$,
Order from Ancrican Institute of Plysics, 57 East 55 th Street, New York 22, New York,

O. Genrmal, Unctassified

0 Acoustics Labotatory, Massachusetts Institute of Teclınology. Third Anniual Report, 19.17-19.18. Ricniand II. Bol.T. 14 pp.
0 Quarterly Progress Renort for October-Decomber, s948. R. H. Bolet, R. D. Fay, and L, L. Bemanek. Acoustics Laboratory, Massichusetts Institute of Teclanology. Short reports on, (1) Trantmision of Soand Through Plates, (2) Radiation of Sound from Metal Plates in Lifuicls, (3) Multiple Alsorption of Nesomators, (4) Absorption of Sound by Gias Ifubbles at a Water-Metal Interface, (5) X-Ray Study of Vibrating Crystals, (6) Development of a Direct Reating Methed for Measuring Acoustic Imperlances, (7) Reflection and Transmissinn of Traveling Iressure Whves by Ilydranlic Valves, (8) Acoustic Reactance of Thin Circulitr Orifices, (9) Intelligilitity of Drocessed Speech, (10) Stady of the Anclastic: Behavior of Solids at Low lemperaturus, (11) Investigition of Lomilspeaker Rusponse in Reverlwrant Enclosures, (12) Response of Peak Meters to Pure lones and Random Noise.
0 Blind Flying by Ear, G, L, Eaton. Air Trails 31 (No. 1), 74-75 (1948), D'sychol. Abstr, 23, 1513 (Mlar. 19.49), 3 - Renearch on Some Problems in Telecommanication and Aconstles. D. Gabor, Onde Elect. 28, 133-439 (Nov, 19.48), In French.
0 Instituto Nazionale di Fiettroacubtica "O. M. Corbino". Attivita Svolta Durante l'Anno 1946 (Natiomal INlectroacoustic Intitute O. M. Carbfon. Projects Stufjed During the Year 1946). A, Giacomini. Ricerca Sci. 17, 409-117 (Apr, 1947), Ann. 「élíconımuth. 4, 21338 (Jan. 1949).

0 Problems in Audio Enginecring, Lewis S. Goodfrilinti. Auclio Eugng. 33, 23, 3.t-36 (Mar, 10.49),
0 Acoustique, Musique et Architecture (Acoustics, Alusic and Architecture), A, Not.Es. Sci, et Vie (No, 365), 88-98 (Feld, 1918). Am, Pelécommen, 3, 1718: (Ajr. 1948).

0 A Stellat Model for Red Gianta of High Central Temperature, Rourert S, Ricitanjuson and Mairin Schwatascialid. Astrophys. J. 108, 373-387 (Nov. 1918). Assumes that tirbulence in the convective core of a red giant emits acoustical noise that carries the entire energy fux through an inothernal layer that surrounds the core. Brief summary in Sci. News leetter 55, 105 (Feb, 12, 1949).

0 Grundzage der Akustik (Fundamentals of Acoustics). Radioteclutik, Alıstria, (No, (i-7), 325-331 (1947), Am, Télécoाииит. 3,17181 ($\mathrm{Apr}, 1948$).

2. Arciatectural. Acoustics

2.1 La Sonorisation dune Petite Salle (Planning a Sound System for a Snaill Hall), R, Bresson. Radio Const., France, (No. 36), 15-18, 50 (Mar. 1948).
21 Ia Sonortsation (Sumad Syems) R Dusow (10 Techmitues ec Commerciales de Paris, 1947). In three volumes. 92 pp , $61 \mathrm{pp}, 71 \mathrm{pp}$. Price for the three, 550 fr. Brief lirench review L. 1300 in Alnn. Telfecommun, 3, A 387 (Aug,-Sept. 10.48).
2.1 Acoustigue Architecturale (Architectural Acoustics). A. de Gouvernain. Documentez-Vous (Nio, 14), 27-28, 38 , Ann. Télécormunn. 3, 17185 (Apr. 19.18).
21 Plaoung und Bau Moderner Bitist Lugen (Dexigning :and losialling Motern ElectroAcoustic Systems). F. A. Iosciter. Radia Service, Switzerlancl, 7 ithd 8 (Nosi. 45 f), (1947-1948), Amn. Telticommun. 3, 19226 ($\mathrm{Aug}_{\mathrm{m}}$-Sept, 1948). A serien of articles on architectural acoustics.
2,1 L'Etablissement du Projet d'Equipement Acoustique d'une Salle (Plaming the Acoustic Biguipulent for a 1fall). A. MoLns. T.S.IF. Tous 24, 13-15 (Jinn. 1948); 111-113 (Apr. 1948), A1m. Tetscummen. 3, 17618 and 18562 (May, July, 10.18).
2.1 Concert Hall Acoustics, P. II, Paukis, Nature, Lond., 163, 122-124 (Jan, 22, 19.19). 15 See Ret. 7.
L'Acoustlque dans les Salles de Cinóma (Acomstics in Motion Picture Theaters). J. Caninau. 'leeh. Cinsmatogr. (No. 70), 273-275 (Junce, 1948), Am. Triccommint. 3, 19230 (Aus,-Seph, 12.18). Electronics 21 ental 3, 19817 (Oct. 1948).
Recording Studio 3 A. G. M. Nison, Broadeast News (No. 16), 3.3-35 (Sept, 19-17). Ann, Telécommun, 3, 17188 (Apr. 1948).
2.2 Une Salle d'Essals Acoustiques avec Parois Amortiesant le Son (Sound.Dimped Acoustic Research Room). Electricit 32, 129-131 (July-Aug, 19.18). Mm. Téti:comminn. 3, 20753 (Dec. 1948). French adaptation of Ref. 4 in J. Acoust, Sme, Amer, 20, 72 (Jant, 1048), 19
2.2 La Nouvelte Maison do Ia Radio, a Stockholm (Tho New Brondeasting Studio in Stockjolm). Bull. W.I.R No, 262), 56. -566 (Nov, 19.17). Ann. Tetécommun. 3 16291 (Feb. 1948).
2.2 Demonatration Studio for Sound Recording and Reproduction and for Sound Film Projection. Dhilips Tech Rev, 10, 196-20.1 (Jan. 19.19).
Measuring the Coefllcient of Ftiction of the Air Passing Through Porous Walls and Subject to Acoustic Vibrations. S. N, RJEjikints and S, S. Toumansky. J, 'lech. Phys., USSR, 17, 681-602 (Jume, 19.17). In Rensian Ama. Tellecmmunt, 3, 17616 (May, 1948).
2,5 Acoustique Architecturale: Mesure des Coefficients d'Absorption des Matériaux (Architectural Acaustics: Measurements of Alsarption Cnefficienss). A, bs Gouvinain, Docimmentez-Voun (No. 18), 21-22. Am T'écommus, 3, 20757 (Dec. 1948)
2.5 See Rei. 271.
2.7 A Technique for Investigating Room Acoustic Response to Shap Impulses, M, l. Dackir, [3, S, thesis in Physics, Massuchasetes Iustitute of 'lechnology (Nay, 1948).
2.7 Synthetic Revertheration. J, F. Dunnovic. Radio New 41, 68-61, 165 (Jan, 1949). A converted mitguetic recorder is used to intromace artificial reverberation into musical reprokluctions.
2.7 See Ref. 209.
2.10 Lydisolation og Rumaleustik (Sound Insulation and Acottstics of Ronms). 13. Baubu. I'rans, Chalmers Univ. Technol., Goteloorg, (Na. 55), $26-4$ pp. (10.46). Brie French olttine in Ana, l'éfecommun. 3, 19231 (Aug.Sept, 1948),
2.10 L'Equipament d'tnsonorisation des Avions (Sound In stalation of Airplanes), W. F. Burnima, F, I. Eatcson, and J. Al, Picton, J. Soc, dutamot. Eugrs. (No. 2) 45-50 (Feb, 1918).
2.10 Building Instalation: A Treatise on the Principles and Application of Heat and Sound Insulation for Building. [?, D. Chosl? (American Technical Society, Clicago, 1947), 372 pp . Reviewtd in Verres et Réfractaires 2, 12.3 (Apr. 1048), and briefly in Ann. 'Jefscommun. 3, 1. 1.308 (Aug ${ }^{-S}$ Sept. 1948).

3. Books and Rhithogkamurs

3.1 Manuel Pratique d'Enregietrement ot de Sonotisation (Practical Manual of Recorting ant Sommd Systems), R, Ascinen and M. Crouzard. (Technique et Valgirisation, Paris, 19.48). 128 pp, Reviows in Nature, Paris, (No. 3161), 288 (Sept. 1948), ant L 1395 in Ams, T'山st comntur, 3, A 530 (Dec. 1948).
3.1 Tho Amplification and Distribution of Sound, A. \mathbb{F}_{0} Greennhers, (Chapman and Hall, Lomdot, ed, 2, 19.18), 302 pp .16 s. Briof summaries in Ant. Tilecommun. 4. L. I.107 (Jan. 19.4)), and J. Sci. Inslrum, 26, 6.3 (Feb, 19.10).
3.1 Vlbratlon and Sound, P'murf Mt, Morses. (McGraw- Ilill, New York, ed, 2, 1048), xix+468 pp. \$5.50, Sliont review L. 1333 in Aun, 'l'elecommant, $3, \Lambda$. 134 (Oct. 19.18). Raviewa in Natiure, Lontl, 163, 232 (Fel), 12,
 1940).
3.1 Elements of Acoustical Engineerings. Iarmy F. Olson. Van Noslrand, New York, ed, 2, 19-17), xviii 4 -539 pp. 37.50. Reviews in Electonnics 21, 252-253 (Fel. 1048), and Ann, Tedécomnutn, 3, A 262 (June, 1948).
3.1 Leltfaden zur Berechnung von Schallvorgingen (Introduction to the Calculation of Sound Phenomena). Heinkich Stenzer. (Juljus Springer, Burlin, 19.39), 12.1 pp. Brief revew in Anm. Tuéconmann. 3, L. 139.1 (Dec. 19.18),

3,1 See Reff, 11, 26, 28, 16, 72, 90, 131, 168, 184, 189, 103, 19.4, 106, 201, 202, 216, 221, 206.
3.2 See Ref. 210.

f. Tili lidk any Hearing

4.1 Duration and Course of the Auditory Senaation. iF, J. J. Buyfendife and A. Miskitiers, Comanent. Dontif, Acad. Sci, 6, 557-576 (1924). ['sychol. Alsitr, 23, 11.30 ($\mathrm{Mar}, 1949$).
4.1 Le Mécanisme de la Percaption Auditive ('Tha Me chanism of Atditory Perception). lis. Drvotue, [3ill. O.I,R, 2, $119-122$ (Alig, 19.18). Ant. 'I'slecommun. 3, 207.16 (Jeec. 19.48)
4.1 Selection of Audible Signals, A. A. Scuultish, Elec, Const, 47, 60-61, 227-229 (Nov. 1948).
4.1 Sce Rufs, 204, 205.
4.2 Développements Récents dans le Domaine de Ia Physiologie de l'Audition (Kecent Developmenta in the Physiology of Hearing). R, Caussh. Rev. Sci., I'aris, 80, 371-383. Psuchol, Abstr, 23, 559 (Feb, 1949), 37
4.2 Recherchea sur ja "Fatigue Auditive" (Researches on "Auditory Fatigue"). R. Causith ind P. Chavasiss. Bull. Diol, 137, 654-656 (10.13). Psychol. Absir. 23, 561 (Fols, 1019)
4.2 Recherches sur te Phênomène de Wever et Bray: Définitlon de l'Eflleacité du Microphone Auriculaire gar l'Enregistrument Automatique des Potentiels Cochtealres du Cobaye (Researches on the Phemomenon of Wever and Jray: Definition of the Efficacy of the Auricular Microphone by Way of the datomatic Registration of the Cocinear Potentials of the Guinea Pig), R. Causish and I'. Cuavass!. Bull. Jionl. 137, 376-378 (1943). Psychol. Abstr, 23, 562 (Feb, 1940) entielle avec 1'Amplitude d'une Variation Brusque de Fréquence, Relation de ia Latence d'une Sensation Auditive Differentielle avec l'Amplitude d'uno Variation Brusque d'Intensite ('lhe Rejation of the Latency of a Differential Autitory Sensation with the Amplitude of a Sudden Clinuge in Frequency or in Intensity). R. Ciociol.a.d. 13ul. 13jol, 137, 64,3-0.14, 751-752 (194.3).
 Psychol, Abstr, 23, 56 (t) (Feh, 1970),
2 Minimal Shocis Pulso Trauma to the Cochtea-Acuto and Chronic. H. B. Premaman, Laryngoscope, St. Loutis, 58, :166-502 (10.48). I'sychol. Alss1r. 23, 573 (Feh. 1019).

1,3 Localizzazione in Altazza Mediante un Oracchio Artifictale (hocalization in Elevation by Meatn of an Artificial Ear). Antonio Bond.is, Antonino Lo Sumbo, aid Guglimamo Zanoteli.f. Ricerca Sci. 18, 156-1-1568 (Nov,-Dec, 1948).
4.3 Differences entre to Seull de l'Audition Binauriculaire et le Seuil Monoauriculaire en Fonction do la Fréquence. Difference entro l'Ecoute Binauriculairo et Monoauriculaire pour la Perception des Intensites Supraiminaires (Differences letween Binaural and Monaural Threshold as a Function of the Freguency, Difterence between Bimural and Monaural Thresholds for the Percepion of Supraliminal Intensitics). R. CuUsse and P. Ciaviasse:, Bull, Biol, 136, 301-302 (19.12), Baychol. Alstr, 23, 560 (Feb, 1949).
4,3 Binaural Sunamation-A Century of Investigation. Ins J. IIrastr, !sychol. Bull, 45, 193-206 (1948), Psychol Abstr. 23, 560 (Feb, 19-19).
4.5 Simplified Speech Audlometry, M, G. Harmmg, Hear ing Aisl 2, 10-11, 25-26 (Nov. 19.48), 45
4.5 Hearing Alds: An Experimental Study of Design ObJectives. Jabioweli. Davis, 5. S. Stieviens, R. H. Nicjol.s, Jr., C. V. Hubains, R. J. Marquis, G. I: Paterson, and D. A, koss, (Harvard Univeristy l'ress,

Cambridge, Massitchusett, 1997), 197 pp, S2,00. Short French review in dun. Telécommon, 3, L 1321 (Aun, Sept. 1948).
4.5 Discussion of Present Methods for Testing Auditory Function. Marvin F, Jones. Amo. Otol. Rlin, Laryng 57, 311-323 (t0.48). Phychol, Abstr, 23, 568 (Feh. 19.49\}.

17
4
1.5 Amplificateurs pour Sourds (Amplifiers far the Deai). G. Jevve, Joute la Radio (No, 125), 151-1.52 (Nay, 1948). An, Téfecommun. 3, 18252 (July, 1948).
4.5 What Shall a Hearing Aid Do? A. P. My veneks, Itearing Aid 2, 12-14 (Nov. 1948).
4.5 Hearing Alds and Audiometers, Gr, Brit, Medical Research Conncil. 74 pp , (Antg. 19.77), Avitiable from British Information Services, 30 Ractefeller Plaza, New York 20, New York, 45 cents.
4.5 In Amplificateur de Surdite (An Amplilier for the Deaf). Hatht-1arletir 24, 5:4-5.15 (Sept. 9, 1918). A1!1, Tertcommutn, 3, 20516 (Dec. 1948).
4.5 Sce Rel. 83.
4.6 Basi della Moderna Audiologla (13ases of Modern Audiology'), A. Azzi, E. Bocca, A. Pumionini, and A. Vago, Arch. Jtal. Otol, 59, 474-517 (Oct. supplement, 1948). In Itallian.
4,6 Sensibllisation Auditive par Stimulation Binauriculaire Discontinue (Auditory Seasitization Ly Means of Discontintotis Binaural Stimutation), R. Causist and P. Chavasis. Bull. Hiol, 137, 84-85 (19.43). J'aychol, Alstr, 23, 563 (Fel), 194D).
4.6 The Minimum Audible Energy. Ht., Dus Vries, detit Oto-Laryng, Stockh., 36, 2.30-235 (1948). l'sychol. Absir, 23, 1131 (Mar. 1949).
4.6 Decibel and Son: A Reply to Dr, Tumarkin. S. IH. Mygind, Acta Oio-Laryige., Stockh., 36, 225-229 (19.48), Psychol. Abstr, 23, 1132 (Mar, 19.49), See Ref, 35 in J. Acotst, Soc. Amer, 20, 884 (Nov. 1948), 55
4.6 Influence of the Preceding Item [Ref, 41] in Mensuremonts of the Noise-Masked Threshold by the Constant Method. Thiman H, Scifafrer. Aneer. Pbychologist 3, 335 (1948). Abstract.
4.6 See Refs, 53, 197.
4.7 La Têléphonie et le Probleme du Bruit a Bord des Avions (lelephony and the Problem of Noise in Air-
 convmin, 3, 45-56 (Feh, 10.18). Abstract 19225 in ibicl. A 361 (Aus,-Sept, 1948).
4.7 Het Verband Tussen Mablering, Toonhoogte-Gewaarwording, on Luidheld (The Relation Between Masking, Smusation of l'itch, and Joudness). H. Mon. PT"TBudrijt 1, 24-27 (19.17-1948). Wita French summiny'. Ann. T'élécommun. 3, 20368 ($\mathrm{Nov}, 1948$).
4.7 The Effect of Thermal Masking Nolse on the Pitch of a Pure Tone. Eart. Schunlert nul John Cokso. Amer. Paschologist 3, 358 (1948). ADstract,
4.9 Generalization of a Reference Scale for Judging Pitch. Donald M, Johnson, Amer. I'sychologipil 3, 358 (19.48). Abstract.
4.9 See Refb, 58, 59 .

4,11 Uber den Derzeitigen Stand der Theorie des Horens ('The Present Situation in the Theory of Jlearing) ERWiN M1EYmR. Naturwisemschaften 34 (No. 12), 358 Summarized in German in Funk and Ton 3, 110-121 (Fub, 19.19).
d.11 On the Labyrinthine Transformation of the Acoustic Vibrations to Pitch-Differentiated Nervous Impulses, S. H. AtsGinb, Acta Oto Laryng., Stockh, Suppl., (No. 68), 53-80 (1948). Psychat, Alsatr. 23, 571 (Fab. 1940).
5. Alrbmen Acoustics, Insthuments and Ablabatus
5.1 New Instruments in Acoustic Research. V, Bathel. Jrilel and Kjar's 'Jechnical Review, Namont, Denmark, (No. 1) 8 op. (Ian, 19.10). In English. Describes a now electrodynamic bigh-speed level recorder and a new beat-frerpuency osciltator.
5.1 Use of the Transmission Mensuring Set Guovais bib Use of the Transmission Measuring Set, Gunkof W.
Curani, Autio Eingnk, $33,26-20,37-30$ (Fel), 19.49). 64
5.t The "Sonograph." Elements and Principlas. J. Drev-rus-Graf, Schweiz. Arcli. Angew. Wiss, 'Tech, 14, 35,3362 (Dace. 1948), In French.
6.5

I Audio Frequency Networks, R. Enbald. Radio News 38, 14-19, 26-27 (Nov. 1917); 14-18, 28-31 (Dec. 1947). Ann. Telecomman. 3, lad53 and 16885 (Mar., Apr. 1948)
5.1 Audio Measurements, J, D, Goonhit. IRadio News, Radio-Electronic Dept, 12, 10-12, 26-27 (Jan. 19.19). 67
5.1 Investlgntion of Hole Injection in Transistor Action J. R, Haynes and W, Sifocktrex. Phys, Rev, 75, 691 (Feh. 15, 1949)
5.1 Theory of the Shock Tube, G. N. Patrianion. Bull. Anutr. Phys. Soc. 24 (No. 1), 21 (Jan. 26, 10.19), Alosiract.
5,1 Reading Ald for the Blind Pronounces Printed Letters Frank 11. Rockitt. Electronica 22, 1.30 (Jant, 10.40). 70
5.1 Efectos Sonoros Electronicos (Electronically [Jmitated] Sound Eftects). P. D. Saw, Rev, Teleg, Argentian 34, 95-98, 122 (Feb. 1946). Ann. Telticomman, 3, 19222 (Auk-Sept. 1948).
5.1 La Pratique de l'Amplification et do la Distribution da Son (Dractical Amplification and Distrilution of Sound). R, nt Scamplit. (Editions Radioh, 320 pp. 450 Srancs. Reviewed in Jonte la Radin (No. 123), 84 (Fets, 19.18), and in Ann, 'Jelecommuns. 3, 1. 12.12 (Miny, 19.48).

51 'Tha Doublo Surface Tranalator Joun N Survi Rev. 75, 680-600 (hel. 15, 1949). 5.1 Les Avertisseurs Sonores (Acolisic Ambunciators). D, Stithee, Ingrs. et Techniciens 29, 13-15 (Aug,-Sept. 19.17). Aun. Tésecommun. 3, 20769 (Dee. 1948).
5.1 Photoelectric Waveform Generator, Davin E. SuN shatn. DElectronics 22, 100-103 (Feb, 1949).
5.1 Audio-Frequency Distortion and Noise Mengurement A. E. TIIRSsEn. Gen. Radio Exp, 22, 5-7 (Dec, 19.17). dnn. Telécomtuun. 3, 17786 (Jute, 10.18),
-5.1 Locating Gallstones. Emic N. Wal.ker, E. G, 'l'iumsTon, and C. K. K゙ıR!イ, Electronics 22, 22-93 (Mar. 1940),
5.1 La Matériel de Mesure Acoustique Telemac, a Ia Folre de Parls 1948 (The Telenac Acoustic Mensuring In* strument Slown at the J'aris Fitir in 1018). Measures 13, 206-207 (June, 1948). Anin. गtécommutn. 3, 20770 (Dec. 1948). An acoustic extensometer.
5.1 Thermometer Listens to Temperature. Science Illustrated 3 (No, 12). Sumanary in J. Franklin Jnst. 247, 68 (Jan, 19.49).
5.1 Sec Refs, 2, 11, 13.

5,2 Quelques Remarques sur Ia Coutbe de Reproduction Sonors d'un Amplificateur B.F. (Some Rentarks on the Curve of Sound Reproluction withan Audio Amplifier). A. Baun. Radio Service, Swizarland, 7, 1006-1007 (July-Aug. 1947). Ant. 'J's'scommun, 3, 18755 (Aug.Sept, 12.18),
5.2 Les Amplificateurs a Selectivite Vardable pour Basse Frêquence (Variable Selectivity Ampliliers for Low Frequencies), E, Garri, Radio Teclan, Digest 2, 105-110 (Apr. 1918), Apn, Teleconmuเs. 3, 187.17 (Aug. Sept. 19.18).

5．2 Portable P．A．Amplifier．J．C．Hoam．jiY．Radio Craft 19，28，20，66（Nov，1947），Ann，＇Télecommun．J_{1} 16850 （．1pr，1948）．
5．2 Amplificateur Miniature（A Miniature Amplifier），M． Janous，Radio Profess．，France，17， 5 （May，1948）． Far the deaf，or for use with a helmet．
5．3 Compact 6AS7G Amplfler for Residance Audio Sy toms．Part 1. C．G．Nicl＇uoun，Audio Engerg，33，17－10， 10 （Alar，1049）
5．2 Amplifier for Vary Low Frequencies，S．P．Pivovanov． J．Tech．Plys，USSR，18，790－80．1（Jtuc，19＋8），Jı Retssian，Ann．＇J＇ticominun，3， 20513 （Dec．19．18）． 85
5.2 Versatile Phonograph Preamplifler．Psul．W．St Giforge ant Binjuamin 13．Dhisko．Audio Eigghg，33， 1＋16，10－11（Nar．10．19）．
5.2 High－Power Triode［Audio］Amplifier．Watirint＇T＇， Srister and Joss JI．Snvotr，Audio Enguts．33，9－10 $36-37$（Fel），19．19）．
5.2 A 25－30 W［att］Amplifer，Radio Service 16，15，40 （June，19．17），Ann．Teliconumun．3， 16851 （Apr．1948） for audio work．
5.2 See Refs．48，51，95，153，158．

5．3 The Invostigation of on Electro－Acoustic Impedance Bridge．Willitan Itible，M．S．thesis in EF，E．，Mas－ machusetts Jnstitute of Technology（May，10．f8）
5．3 See Refs．2， 277.
5．4 Frequency Analysis．Modulation and Noise，Stanvorin Goldman，（McGraw－Hill，New York，19．48），xiv＋434 pp．\＄6．00．Brief French review in Ant，Téteommun 3，i．135．（Nov．19．58）
5．4 Un Analizzatore Elettrico delle Curve Oscillant Secondo il Methodo di Vercell！（An Eleciric Analyzer for Oscillatins Curves，lated on Vercelli＇s Metbod）． G．Lovera．Nuovo Cim，5，150－153（Junt，1948）．Ann T＇idecomant．3， 20.159 （Nov．1948）．Sci，Abstr，［3， 129 （19．18）．
5．4 Factors in the Design of n Sound Decay Analyzer
 chatietts Institute of Teclunology（Oct．19．47）．
5．4 Calculation of the Components of an Aconstic Fitto which Includes a Spherical Chamber，the Dimensions of the Filter nat being Saall Compared with the Wave－ length．13，К，Shaldro，今 Tech．Phy＇s，USSR，17，9．13－ 954 （Aug，1047）．Jn Rüsian．Ann．＇Tésécommun， 3 18076 （ \int une， 1948 ）．
5．f A Sonic Analyzer．Ratio）Electronics 20，40－41（Oct 19．48）．Aun．Téféconnun．4， 21243 （Jan，19：9）， 0.4
5．5 Sec Ref． 45
5．5．1 10－Kw FM Broadenst Amplifler，！．R，Boykin，FM 8， 18－20（Dec，t9．18）．Design of the grounded grid Westing－ house unit．
5．5．1 WMGM Master Control Equipment Deslgn．M．E， Gunn．Audio Eugng．33，2．4－28，30－40（Alar．19．19），A modern，high－power，broaficasting installation，
5．5．1 Static for Radio Recelver Tests．J．C．R．Licklapirn and E．B．NEwasan．Electronics 20，98－101（June， 10．47）．
5．5．1 Audlo Technique in Television Broadeasting，R． H ． Tannlar，Audio Engng，33，9－13，11－44（Mar．19．19）， 98
5．5．1 Sound Recording as Applied to Broadcasting．M．J．L． Puti．ing．13．B．C．Gaart，3，108－121（July，1948），Ann． Tefecommun．3， 2038.4 （Nov，1948）．
5．5．1 Influence de la Largeur de la Bande Pagante a la Réception sirr la Qualité de la Reproduction Mubicale （Inthence of Received Band Width on the Qutality of Reproduced Music）．Bull，Doc，Inf．O，I．R．（No．1），
 1948）．Sunmary of dirat article referred to under 5.51 in J．Acoust．Soc．Amer，18， 230 （July，1946）， 100
5．5．1 See Refs，20，176，211，

5．7 Le Quartz a Fréquence Variable（Variable Frequency Quarla），R，Duclamb，Radlo IProfess，17，1－1（June，

5．7 Comments on the Definition and Measurement of Fre－ quency，J．O．KNisspk．Arch，Jieker．Olertrageng 2 167－169（Apr，－May，1）．88）．In German．
5．7．L＇Auscultation Rando des Montres（Bapid Ausulis
 tien of Watches）．J．Marcitant，Sci．et Vie 79，152－156 （Sept，19－18）．A11th．Télécontuan，3， 20771 （Dec．19－48）． Apparatus for rapill regulation of ritte of watches． 103
5．7 Frequentie－Standaarden en Electronische Telsystemen （Fredutency Standards and Electronic Comoting De－ vices），If，vas Dijh．Tijdmelor．Ned，Radiogenoot，12， 37
 1948），ant in Ant．Jefecommun，3， 20025 （Nov．1948）．

5．7 See Ref．223．
5.8 La Queation des Haut－Parleurs（The Getrition of L．ond－ speakers），L．Cimuritis．T．S．F．Tous 24,83 （Apr，19．18）． Ann．Telicomaun．3，18568（July，1948），
5．8 Speaker Replacements，S，Zilakitk and N．S．Cmom－ welt．Radio Service 16，22－24，12－1．1（June，1リ－7）． Ann．＇T＇élécomman．3，16986（Apr．1948）．
 Subscriber）．Franal．．STF 2，107－108（Niny－Junc， 19．48）．Atn．Téleconmun，3，20094（Nov，1948）， 107
5．8 Wide Range Speaker Systems．J．C．Hoanlex．Radin News 10，53，1．13－1．4（Sequ．19．18）．Aın．Télécomuma． 4， 2123 t （fiti．1949），
5．8 A Proposed Loudness－Efficiency Rating for Loud－ spaakers and the Determination of Systen Power Re－ quirements for Enclosures．H．J．Holkins and N．R， Stavkira，Proc，Jasi，Jadio Engrs，N，Y＇，36，315－3．35 （Mar．19．49）．
5.8 A Nomopraph for Mult－Spealeer Matchits R IE Labreatr，Radio Service 16，28－29（June，10．47）．Ann， Tedecominu．3， 17199 （ A рr．1948）．
5．8 A New Corner Spreaker Design．Pirt Il．C．G．Nc． Jroun，Audio Vithis．33，1．3－16（Fel2．19．99）． 111
5．8 La IH．P．de Sonorisation（Lomdspeakers for Sound Systems）．M．P＇scart and Y，Guyot．＇Tonte Radio（No．
 19853（Ocl．19．18）．
5.8 A．C．Wattmeter Tests Speakers．I．Qublen，Radiu Craft 19，3J，84， 85 （Dec．19．47）．Ann．T＇éleom， （Nar．19．18）．
5.8 Altavoces：Proyecto de las Diferentes Partes atruccion de sus Difusentes Partes（Designing ambl Butiding Lomdspeatiers），E．Richumasitar，Rev，Elec， trolech．，If．Ajres，30，167－179（Oct．1194）；538－5．47 （Nov．1044）．Ant．Télecommun．3， 16.305 ：uxt 16.30. （Fels，19：18）．
5．8 Flexible Dual Control System．Howard＇T，Stiertisti Auslio Engag．33，11－12（Beh，1949），A cominumasly variable system providing hoost and cut for hoth areble and hass．
5.8 Ultra Loudspeaker is Auto－Truck Size，P H Tur Raslin Electronics 20，22－24（Oct．10．18），Atn．Jeth－ cammuti，4，21233（Jan，19．19）．
Le Point des Haut－Patleurs（lla
 Sept．19：8），
5．8 New Trends in Loudspeakers，Kadio Electronics 20 A．1－35（Oct．1948）．Ann．Téléconmun，4， 21232 （Jan， 19.97.

5，8 Ste Refs，2，88，121， 305.
5．9 It Rivelatore Plezoelettrico（The liezanectric Alicri－ plone）．N．Cal．faciale，Amenam，Inaly，20，6．1－67（Feb， Mar．19．48），Am，＇Télécombuth．3，10852（Oct，19－48），
5.9 Single-Element Unidirectional Microphone. Hakry F. Ol.son and Joms Priston. J. Soc. Mot. Dict. Eiters, 52, 203-302 (Mar. 10.49).
5.9 Mitrophone for Lantsprecheranlagen (Microphames far
 technik, Atstria, 23, 111-118 (1047). Ann. Teléconumun. 3, 18081 (Junte, 19.18).
5.9 Microphones, 1020 to 1948 . I, A. Smitir. Radio Age 7,27-28 (July, 19.18). Amn Telicomann. 3, 20764 (Dec. 1948).
5.9 Les Microphones (Microphones). Télév, Franç. (No. 33), 40-13 (Jan. 10.48). Ann. Telscomnunn. 3, 17106 (Apr. 19:8).
5.11 Construction of Non-Linear Sinusoidal Osclllators by the Mobile Axis Method. J. Anles.e., Amn. Phys., Paris, 3, 655-679 (Nov.-Dec. 19:88). In Irench.
5.11 A Frequencies. C. A. Cabv, Gen. Ratio Exp, 22, 1-5 (Nov, 19.47). Anu. Télécommun. 3, 168.31 (Apr. 19.48).

125
5.11 Single-Valve A.F. Oscillator. K. C. Jounsmn, Wiruless World 54, 82-84 (Mar. 1948). Amn. Tedccomutn. 3, 19547 (Oct. 19.88).
5.11 Magnetostriction Generators. J. A. Osmors. Elect. Fagng., N. Y, o7, $571-578$ (Junc, 1948), Amn. Thescommut. 3, 19230 (Aus.-Sept. 1948).
5.11 Frequency-Moduinted Audio-Frequency Oscillator for Calibrating Flutter-Measuring Equipment. I: V. Smith and Edwand Stanko. J. Soc. Mot. Piet. Engrs. 52, 309-312 (Alar, 1949).
5.13 Sllent Playback and Public-Address System. Bruct: H. Denney and Ronert J. Cabk. J. Soc, Mot. Mict. Engrs. 52, 313-315 (Mar, 19.19).
5.13 Experiment in Stereophonic Sound. Lomin D. Gbicios. J. Soc. Mot, Pict. Eurrs, 52, 280-292 (Mar. 19.19), 130
5.13 Cellules Photoclectriques et Cinéma Sonore (Photoclectric Cells and Sound Pictures), Gubilikr. (Ecole Nationale Supérieure des Telécomumuications, 10q4). 1.47 pp, Short summary in Ann. Tultcommun. 3, A 211
(Mny', 19.88).

131
5.13 Adjustment Speed of Automatic-Volume-Control Systems, A. W. Notale, Jroc, Inst. Rialio Engrs., N. Y., 36, 91 1-01((July, 1948).
5.13 Choosing the Proper P.A. System. A. J. Sanial, Radio Service 16, 2.1-26 (July, 19:47); 2.i-26 (Aug, 19.47). Ama. Teldeommat. 3, 17200 and 17201 (Apr. 1948). 133
5.13 Regulacion de Volumen en Ia Etapa de Salida (Regiolating the Volume from the Oumb Stige). E. G. Santtago. Rev. Telecom., Spain, 2, 3:-37 (June, 1947). Ann. Tesicomnunt, 3, 17626 (May, 19.48).
5.1.3 Sonorlsation Pubtlique (Puthlic Address Systems). P. J. Wal.kren, Radio Techu., France, 2, 261-208 (Dec. 1047), Ann. Telecommann. 3, t6657 (Nar, 19.18). t.35
5,13 Sound Sybtem Components, R. A. Mitcinetid. Int. Projectionisr 24, 5-6, 8, 29-30 (Jin. 1949).
5.13 Sec Re . 82.

5,15 Enregistrer Rapide do Niveau S.A.C.M. Type 2128 (Rapit Rewording L.evel Neter of the Societd Alsacieme de Constructions Mécaniques). Cables et Transm, 1 , 256-260 (Oct, 1947). An! Télécommun. 3, 17180 (Apr. 19.18),
5.16 Un Suppresseur Dynaminue de Druit de Fond, aver Seuil de Transmission dans la Bande Paseanto sans Suppression d'Aucune Fréquence Elevée d'Amplitude Nomale (A Dymanic Suppressor of Backgrounald Noise, Normale (A Dynamic Suppresior of Background Noise,
Having in the Pass Band a Threshold of Transmissinan that does not Suppress Auy High Frequency of Normat Amplitede). P. A. Hoursauler. T.S.F. Tous 24, 181-18. (July, 10:48). Ama, Tedteommun, 3, 19585 (Oct. 10.48),
5.16 Uber Tiefen- und Höhenentzerros mit R-C-Gliedorn fur Niederfrequenz (Low and Digh Distortion Compensators will RC Scetions, for L. NW Frequencies), W. Daudt. Funk und Ton 3, 3.3-12, (Jan, 1949); 86-92 (Febl, 19.49)

139
.16 G. E. Variable Reluctance Pick-Up. A. Dotidas Electronic Eingug. 31, 21-2.4 (Jith, 19.40). M. 140
5.16 Die Künstlerischen und Technischen Probleme der Schallabertragung (The Artistica anl Technical Drob. lems of Saumd Transmission). J, Gruniskt, FInk hand Ton 3, 57-58 (Jan, 19:i0).
5.16 Frequency Range for Speech and Music. H. F. Ocmos. Broideat News (No. 16), 28-32 (Sept. 10.17). Nnt. Teléconumun. 3, 1718, (Apr, 1948).
5,16 Audio Nolse Reduction Circuits. H. F. Or.sos, Electronics 20, 118-122 (1)ec. 1917). Ann. Telecomman, 3, 16663 (Mar. 1948).
5.16 Naw Automatic Sound Slidefilm System. IV, A, Palmerer. J. Soc. Mot. Pict. Engrs. 52, 320-325 (Miar. 19.49). :14
5.16 Functional Specifications for a Sound Recordor for the Psychological Clinic. Victor C. Ramy, Amer, Psychologist 3, 513-518 (1948). Psychal, Alsitr. 23, 1038 (Mar. 1949)
5.Is Recording and Reproduction of Sound. O. Rean amer. Embshl., Ratlio News 40, 48-50, 120, 122, 124 (Dee. 19.18).
5.16 Full-Range Loudness Control, Jous Winsiow, Audio Eugng, 33, 2.4-25, 39-40 (Fel), 19.49).
5.16 Sound Systems for Church Towers. Raulio Service 16, 18, 20, 38-41 (Nov, 19+7). Ann. Telecommun. 3, 18084 (June, 19.18).
5.16 Reproduction Stëréophonique de la Musique (Stereophonic Reproduction of Music), Maus-Parleur 24, 21-22 (Fel. 1948).
16 Sen Refs. 21, 65, 80, 09, 100, 132, 190 ,
5.16al Vacuum Tube as Phono Pick-Up, R, R. Banis, Radio Craft 19, 36 (Juty, 1948). Alun. Telecomman. 3, 19851 (Oct. 19:88).
1.50
5.16d Phono Record; Cutting and Reproduction. W. W. Cakruthers. Radio Service 16, $3.4-3$ (Sept. 19.47). Am. Tellecomann. 3, 17203 (Amr, 10.48).
5, 16a! Un Nouveau Pick-Up Electromagnetique (A New Electromagutic: Dickurp), Berthator and Manan. Tis.F. Tous 24, 211-2.13 (Siept. 1918), Ann. Felscomunun. 4, 212.18 (Jant. 19:49).
5,tod A Low Cost Phono Amplifer, G. R, Chypak. Radio News 38, 61 (Scpt. 19.17).
5.16a Installation, Description et Essais de Pick-Up (IInstallation, Description, and Testing of Pickups). P. I.. Countain, T.S.F. Tous 24, 193-156, 2.3-2.4 JulyAug, Supt, 1948), Aan, Teltcommun, 3, 19859 (Oct. 1918); 4, 21237 (Jan. 19.19).
5.16id Equipo Grabador de Construccion Cusera (IIomemade Equipment for Cutting [Phonograpls Records]). J. F. Frikeyha. Rev. Jeleg. Argentina 34, 33-37 (Jan. 19:46) Am. Thlscommun. 3, 19257 (Aug.-Scpe. 1948), 155
5.1Gd Technlque Maderne de Lecteur de Disques dit PickUp (Modern 'rechnique lor 1'honographt 1'ickups). I' Hemarpinquer, T'S.F, Tous 24, 107-202 (July-Aug. 1918). Aın Telecameman, 3, 19860 (Oct, 19.48). 156
5.16d Plck-Up Originaux (Unusitial Pickirps). P. Hemarmanquer. Haut-biarienr 24, 5.11-5.14 (Sept, 9, 19.18). An. Tettcommun, 3, 20766 (Dec. 1918).
5,16x Antplificateur Phonographique Tous Coarants a
 tate 'Tathes, For A.C. or D.C.). M. J.teroux. Radio Professi, France, 17, 17 (ipr. 194S). An, Telecommun. 3, 182.11 (July, 1948).
5.16d Un Ensemble Phonographique de Haute Fidulite (A Plonographic Einsemble of High lidelity). M. Darous.

Radio Profess. 17, 23-24 (Sept. 19.48). Ama Deheommun. 4, 212.36 (Jin. 19.49).
5. 16 gi The New Victor Jewel Box. Pumbe L. Minler and Alorron lies. Noters 6, 20,3-264 (Mar. ${ }^{\circ} 9.99$). Ifict
5.16ed High-Fidelity Response from Phonograph Pickups. Ei.LVE J. O'Butes. Electrontics 23, 118-120 (Mar. 1949).
5.1 (x) An Improved Lacquer Disc Recording Head, H, Kovs, Atdio Entgig, 33, $21-23$ (Tel), 19-49),
5.1 th Dia Lichthandbreite (The Widah of a Beate of hiv) Kuliotechujk, Austria, 23, 509-570 (19.47). Ama Tethcommen, 3, 18085 (June, 19.48). The beam of light is reflected from a furrow in a phonograph disk.
5.1fol Commercial Disc Recording. Wireless World 54, 67 (Fet). 19.48). Aun. Telecommun, 3, 17629 (Nlay, 19.18),
5.16d Modern Crystal Phono Pickups, Radio Electronics 20 29 (Oct. 1948). Ann. Télécommun. 4, 21235 (Jan 19.10).
16.5
. Inf Playing Records Non-Stop Pobsible with New Machine. Sci. News letter 55, 184 (Mirr. 19, 1049), 160
. 1 fod See Ref. 86.
5. Iof LeEnregistrement Sonore par Gravure sur Film (Rccorting Semand by Traciag on Film). M. Abam. Teed. Mrod., Paris, 40, 21-2.3 ($\mathrm{Jam}, 1-15,1918$).
30t Sound and Documentory Film, 1 liman and Soms, itud, London, 10i7. Alson distrituted by l'itman P'ublishing Corporation, New York), xv + 157 pro. 15 s, Review in J. Soc, Mot. Pict. Eagrs. 52 357 (Mar, 1949).
5. 1 af $16-\mathrm{Mm}$ Film Phonograph for Profebsional Usu. Caks. E. HIrries. J. Soc, Mot. Pict. Engrs. 52, 303-308 (Mar. 10.49).
ar.
Iff Procêdês d'Enregistrement Sonore sur Films (Procedures in Recorting Sounul om Films). P. Jacguns. Tech. Cintmatogr, (No. 60), 2.48 (May, 19.18); (No. 70), 268-260 (Juй 10, 1948), Aun, Tólécommun, 3, 192.59 and $1925+$ (Ams.-Sept, 19.8).
5.16f Methods of Producing Sound for Fluns. N. Letewiks, Phologr. J. $88 \AA, 216-219$ (0.t. 19.18),
5.16f Ein Verfahten zur Lichttonaufzeichnung (A Procedure Sor Recordiag Sound un Fiftu). Laminauser. Funk und Ton 2, 208-21! ($\mathrm{Apr}, 1048$). Am, Tetecommun. 4, 21239 (Jan. 1940).
S.1Om Magnetic Recording-Ploybact with Wire and Paper. T. Ahthenk, Radio Service 16, 18, 20, $16-51$ (Jene 19.47). Aum. Télécommun. 3, 17205 (djur. 19.18). 173
5.1 man Les Enregistreurs Magnêtique (Maknetic Recorders). M. Blastouthil, Documente\%Vons (No. 20), 11-12. Ann, Télécomuman. 4, 212 20 (Jian, 1999).
5, (Gin Equalizer and Preamplifier for Magnetic Phone Pielsups, J. S. Carrolat, Radio News 40, 59, 175-176 (Dec. 19.18).
5.16 m Magnetic Tape Recorders in Broadeasting, H. A . Cinnn, Electronic Engng, 19, 303-305 (Dec, 19-17). Am, Télécomman. 3, 16668 (Mar, 19.18).
5.16 m Betriebsmansige Messung von GlaichlaufschwanIkungen an Magnetofonen (Industrial Method of Mensuring Variations in the Velocity of Magnetophone Tapes). F. Enkit. Fumk had Ton 3, $104-106$ (Feb. 19.4).
5.6m Binichtung zum Aufinden von Tonstolten auf Magnetophonband (Apparatus for Finding Desireld Polats on a Alagutophone Tape), H. GUNFA and W. Limert. Funk und Ton 2, 125-13.4 (Mar, 10.18). Ant. Telécommun, 4, 212.11 (Jan. 19.f0),
5.16 m L'Enregistrement Sanore sur Fil et sur Ruban et se Rêcents Dóveloppements (Recorling Samnd on Wire and on Thpe, and its Recent Developments). P. Hemardinquar, T,S,F, Tous 24, 105-108 (Apr, 19-48). Aun Tetsconmun. 3, 18571 (July, 10.18).
5.tom Doveloppement et Pratique de l'Enregistrement Mngnetiqua sur Fil ot sur Ruban (Develupment anil Practice in Alagetic Recording on Wire and lipe). P. Hemampnoume. T.S.F, Tous 24, $165-167$ (Jime, 19.48),

5. 1 (im Develojneents in Magnetic Recording. I. T. IIonson. Electronic Enumg. 19, 377-382 (Jec, 19.7). Aba, Tetecomman. 3, latith (3)it. 19:18).
5. Ifrin Data Recording on Magnetic Tape. 1.. G. Kur lefeetronic: Indasi. 2, 3-5, 31 (dpr, 10.18). Aun. Teleicimumin. 3, 18.574 (July, 19.48).
5.16 m Lencegistrament Magnitique des Sons (a) is Recording of Sumuls), Doctunenter-Vous (No. 1.1), 2.125. Ana. Tdéécontun. 3, 17206 (A pr. 19:18). 18.3 5.16m See keer. 25.
5.17 See Refs. 57, 107.
6. Musical. Insthumients ann Music
6.t Les Gammes Musicales (Musical Scales). Auda Avtonse. (Puhlished by the athdior, 90 Avenue dat Val d'Or, Wuluwi-Sime-Pjerre, Belgima). Italim review in

6.1 Irregutar Systems of Temperament. J. Muhay Bar Itour. J. Mmer. Mlasical. Sise. 1, 20-20 (Fall, 1998), 18.5
6.1 Music and Ternary Continued Fractions. J. Murray Bablous, Amer, Math, Monthly 55, 5.15-555 (Nov 1948).
.1. A Critique of the Genetic Theory of Consonance Eugene G. Hugg and Mmert S, Thombios. Amer.「sychotopist $\mathrm{J}_{2} 328$ (19.48). Absitract.

187 Poychologist 3,328 (19-48). Absitract.
(Dec.
Audio Range Chatts, liat Television 7, 24-25 (Dec 19.47). Frerpuency rimges for various instruments, 188 See Refs. 7, $60, \mathrm{~J} 49$.
6.2 Carillon. Akrnen Busps Bicmow, (Princeton Univeriity Press, Priaretor, 1948). 85 pp. \$2.00. Shart review in Diapason 40, 99 (hes. 1990).
6.2 Un Nouveau Procédé d'Enregistrement Electromagnetique du Son (A New Method for the Electromatsnetic Recording of Somid). G. Gakens. Tonte la Radio (No, 126), 191-196 (June, 19.48). Anu, T'Ĺcomıии. 3, 19262 (Aus.-Sept. 1948). To be used in place of bells in towers destrosed in war.
62 The pupase of Invetionting the Sound of Clint Bells. E. Thusviaus. Arch. Elektr, Otertragung 2, 2107-208 (Apr.-May, 19:18). In German.
6.2 Se Refis. 1+8, 202
6.3 Player Intonntion Differences as Related to the Bell Taper on Trumpets. jois C, Wiselsren, Amer. Psschonopist 3, 338-33y (19.88). Abstract.
6.5 Early History of the Orran. Willa duze (Madienal Actalemy of America, Canabridge, Massichusette, 19.18). 25 pp . 51.00 . Reviewel in Notes 6,301 (War, 19.10). 193
6,5 The Contemporary American Organ. Wul. 1 as Hake!son Bakses. (J. Fischer mud Bre., New York, enf. 4, 19.18). 3.49 pp. $\$ 2.50$. Short review in Notes 6, 31.3 (Mar. 19.49),
6.5 Electroncoustic Measurements of the Famous Baroque Organ in Upper Swabia, W. Lutperaosim, \%. Nalurforbel, 3a, 298-308 (May, 1948). In Geruman. 195
6.7 Les Instruments dit Quatuor (The Instruments of the Suing Duartet), Piscmarla Marc, (Presses Univerítaires de Fratce, Paris), 138 pp. Hrief Italian re view in Riv. Musicale Ital. 50, 306 (fuly-Dec. 19:18), 106
6.7 Deux Violons Font-Ils Plus de Bruit qu'un Seul? (Do Two Violins Give More Sound than One?) A. Molus J. Phys. Radiam 10, 34 S (Van. 19-49). French Abstract.
6.7 The Monochord as an Instrument and as a System. Sichfrib Phagikr. J. Amer, Musicol. Sac. 1, 52 (Fiall, 19AS) Abstract.
6.7 The Timbre of Old Italian Master Vialins, इ:, Rouluoff, 7. Naturforsch, 3a, 18.4-185 (Mirr, 19.18). Jo German, !'hys, Ahsir, 52, 1.10 (Jat. 19.49), Electronic Organs Studied in Relation to Church Probem, Withias H. Barnes, Diapason 40, 22 (Fiels. 1919).
6.9 Electronic Musical Instruments. S. א, LJiwna, (Elece tronic Enginecring, Lomlon, 19:f8). 101 pp, 3s. (if. Review in The Music keview 10, 60-67 (Feh, 1919), 2111 Chimes and Electronic Carillons. Paum. D, Pbiekr. (Joln Day Company, New York, 1948), xi+i+16 pp, \$3,75. Revicw in Notes $6,313-314$ (Alar, 19.99). 202

7. Nouse

7.1 Niveles de Ruido (hevels of Noine). F. Malvarez. Rev. Teleg, Argentina 35, 589-591 (Sejt. 1016). Ann. Tett commun. 3, 19233 (Aus.-Sept. 19.18)
7.1 Le Bruit Phénomene Physlologique (Noise A puysur logical Phenomenon), A, Not,ks. Ratlo Françise, $24-$ 33 (Alay, 10.48). Ann. Thecomuman, 3, 20751 (Dice 1948).
7.1 Physlologie du Bruit (Jhysiology of Noise), A. Mot.est, Radio Française, 5-7 (July-Aug, 1048). Ann. Tele. commut. 3, $198+5$ (Oct, 19.18),
7.1 Le Technique du Bruit ('The Treatment of Noise), A. Motars, Radio fransaise, 13-17 (Sept. 1948). dun. Telecumminn. 4, 21215 (Jan, 1949),
7.1 See Ref. 76.
7.5 Frequency-Loudness Chart for Industrial Noise. H. C Harby, Indusiry and Jower (May, 1047). Gen, Radio Exp. 22, 7 (Scpt. 19-47). As. Tejectuman. 3, 185 m Exp, 22, 7 (Sept. 19-17). Abl. Tejecomman. 3, 18 sin (Iny, 1948).
Noise Measurements on Cog Whoels, II. Cl.smirra. Arch. Tech. Messen (No. 158), '1117 (Dec. 19:8), In Germian.
7.7 Sea Rufs. 57, 207.

9. Subitcil and Singang

9.1 See Ref. 70
(he Infance of Reverberation upon Articulation. Cinkence Silul.tz, M.S. thesis ia E.J:, Massachaselts Institute of Technology (Jatn. 19.18).

3 A Speach Corraction Bibliography. (Naliamal Society Tor Crippled Children and Atlults, Chicago). 17 1p. Brief review in Volta Rev. 51, 88 (Feb, 10.19).
9,3 Sec Rufs, 2, 211
0.6 The Influence of Amplitude Limiting and Frequency Selectivity upon the Performance of Radio Receivers in Noise. W. J. Cunninnilazt, S. J. Gorpakn, and J. C.
 1021-1025 (Oct. 1947).
9.10 The Study of Itajian Pltonetics in America. K. G. Ihotrsy. Italica 24, 251-25: (Sept. 10,17),
9.10 Infant Speech. I. Consonant Sounds According to Mace of Articulation. II. , . . . Monner. , . , O, C. Intwin. 1. Speech Disarders 12, 397-10t, 102 - 10.4 (Dec. J9.17),

10. Ubrmasonics (Suprersonics)

10.1 Visual Methods for Studylng Ultrasonic Phenomena, R. Bowling Barnies and Cliablisi J. Bubron. J. Aphl. Ply's. 20, 286-29.4 (Mar. 19.19).
10.1 Ultraschallverfahren und Seine Anwendung Im Materialprifungswesen und in der Medizin (Ultrasonic Procedure and Its Use in Testing Naterials and in Medicine). R. V. Baun, Sciwtiz, Bauztg, 66, 208-2t19 (Apr. 19, 19.18). Amr. 'Velécommun, 3, 20760 (Dec. 19.18).
10.1 Supersonics: Tho Science of Innullblo Sounds. Robrat Whatams Woop, (Brown Uajversity, I'rovideace, Whode Islatid. 1048). 16.1 [pl. $\$ 2,00$. Reprime of tha Charles Vi. Calver lecenres (1937). Reviewed in J. Franklin lusi. 247, is (Jan, 19.50), and in IMysica Today 2, 20 (Feld, 10.40).
10.2 On the Dispersion of Light by Colloid Particles Which have been Straightened by Sifpersonica. H. Büsma. Helv, Phys, Actil 21, 280-208 (Attg. 10, 10.48). In Germat.
2 Modulateur d'Intensité Luminense A Ultra-Sons (Molufator of Luminous Intersity by Ulerasonic Whats). R, Gandarard, Duchmentez-Vous (No, 17), 20-21 (1018). Atu. Télécomman. 3, 20.103 (Nov, 19.48). 218 On Some Optical Effects in Supersonics. D. SEITLS. Nuovo Cim. 5, 193-197 (Oct. 1, 19-48). In Italian, with English summary.
10.3 Uber die Elgnung von Amnoniumphosphatkristallon als Uitraschallgeneratoren (Ilu Utifity of Ammoniam 1'hosphate Crystals an Ultrisonic Cenerators). H1, उЗmmet. ITelv, Phys, Acta 21, 102-110 (Sept, 30, 1948).

10.3 In Piezo-Elettricita (Piczoblectricity). M. Did.dA Rocea

10.3 Design and Application of Supersonic Flaw Detectors. D. C, Eroman, Irans, Amer, Inst, Elect, Engrs, 12711376 (19.47). Ant. TClecomantm, 3, 20762 (Dec. 19.48)
10.3 Method for Changing the Resomance Frequency of Crystal Oscillators, W, Hsazzog, Nrch. Elektr, Ohertraking 2, 153-16.3 (Apr.-May; 1998). In German, 22.3 Mothode zur Diffusionsmessung Zweler Fluissigicoiten Vermittelst Ultraschallwellen (Method of Meatiuring the Diffusion of Two Finjds by Means of Ultrasonde
Whyes), M. Kinnouna. Helv. Phys, Actat 21, 116 (Jume IS, 1018), Aun. Télécommıtn, 3, 19850 (Oct. (1).18).
10.3 Ultrasonic Applicator. A. Roblents. Radio News, RadioElectranic Deph, 12, 3-5, 25 (Jan, 1049). Design, casstruction, and application uf a 595 kc. nleasonic generator for use in medieal therapentics. 225
3 Experimental Ulirasonics. Part I. Design, Canstruction, and Operation of the Yartmann Whistle. S . Yount

10,3 Radiotechnile In Dienst der Minden (Wadio Technifuc in the Service of the Blind $)$. Radiotechnik, Austrin, 24, 137-1.38 (Ajr, 19-18). A summary of artiches on reading and on clesecting neighburing obstacies.
10,3 See Refr. 2, 101, 201.
10.4 Sur la Mesurs des Caracteristiques d'un Courant Gazeux Rapide au Moyen d'un Faisceau dUltrasons (Aleasuring the Characteristics of a Rajicl Curent of Gas by Mteans of an Ultrasmaic Jeami). Gunfyidva Dubois amd Roger Nolmang, C. R. Acal, Sci,. Faria, 228, 36.3-364 (Jan, 31, 19.4)).
0.4 Attenuation of Sound in Rarefied Helium. Maletin Grtinnsian. I'hys, Rev. 75, 197-198 (Jatn, 1, 1949), 22)
10.4 Measuremento on the Velocity of Sound in Mixtures of Hydrogen, Heldum, Oxygen, Nitrogen, and Carbon Monoxide at Low Temperatures, λ. van ITrienililik and IW, van Donincs. [roc, Phys, Soc., Lond., I3 62, 62-69 (Jan. 1049)
Experimental Determination of Volocity of Sound in Superheated Steam by Ultrasonics. J. Woonhuns. Trans. Amer, Soc, Mech, Eagra, 71, 65-70 (Jan. 19.f9).
10.5 Velocity of Sound in Liqudd Oxygen, A. Van Ittiermabs and A, de Bock'. Physica, 's Grave, 14, 5.12-5.14 (Dec. 19.48). In Engliah.
10.5 Measurements of Ultrasonic Absorption in Viscous Liquida. Joserivt I., Hustelk. Jull, Amer. Plys. Soc, 24

10.5 Absorption and Dispersion of Ultrasonic Waves in
 Nature, Lont., 162, 90.1-99.! (Dec, 25, 1048)
Measurement of the Mechanical Properties of Polyarer Liquide by Ultrusonle Methods, W, P. Mason, W. O. Baskr, H. J. Miskimen, and J. H. Hisiss, Inalh. Aner. 1'hy's. Soc. 24 (No. 1), 10 (Jan. 26, 1949). Atritract. 23.5 Disperaion des Subpensions Argileuses aux Uitrasons.
Interprétation des Resultats au Microscope Electronifue (Dispersion of Susprensions of Clay by Uftrasionic Waves, Interpretation of the Resulta IVill the felectron Microncope), Aonas Mathifu-Sicaud and Gutitave Lurvayasseur. C. R. Acad. Sci., Patris, 228, 303-305 (Jan. 31, 1949).
Absorption of Sujersonic Waves in Liquid of Very FiIgh Viscosity. I. G. Mikilail.ov aidel S. J. Gumevicin. Dokl. Akad. Nauk SSSR 58 (Nr, 2), 221-224 (19.17), In Russian. Phys, Abstf, 52, 136 (Jan, 1919). Ultrasonic Reverberation Measurements in Liquids, C. E. Mus.Ders. Applied Sci. Res, 31 (Na. 3), 149-167 (1918).
10.6 Energy Losses of Sound Waves in Metals due to Scnttering and Diffusion. W. IP. MAson and II. I. McSciatis, J, ippl. Jhoss. 20, 228 (Pels, 19.19). Erratis on Ref. 174 in J, Acoust, Sis. Amer, 21, 150 (Mar, 19.19).

Absorption of Supersonics by Solids, k. Mercuik ant N. Banberdiv, Julv. Jlasi, Acta 21, 220 (Aug, to 1918), In French.
10.6 Ultrasonic Velocity of Longitudinal and Transverse Waven in Metallic Beryllium at Low Temperatures. W. C. Overron, R. II. IKy, R. W'. Schamt, ami C. F. Spuane. Boll. Amor. Plys, Soc. 24 (No. 1), 40 (Jat, 26 1949), Absarict.
O.6 Acoustical Birefringence. W. J. I'rice. Jlys, Nev. 74 1880 (Dec. $15,19.18$), Alsistract
10.6 Transitlan Temperatures of Methyl Methylmethacry late Polymers at Ultrasonic Frequencies. Titomis $\mathrm{F}^{\text {F }}$. buoteman. Buh. Amer, lhys. Soc. 24 (No. 3), 9 (Mar. 10, 19.19). Abstract.
10.6 Elastic Losses of Elastomers at Ultrasonic Frequencies
 24 (No. 1), 1t (Jan. 26, 19.19). Absitract. 256
10.6 Determination of the Elastic Constants of Solids by Uttrasonic Methods. Wthimam C. Scilnatuler and Chamees 1. Bukton. 1. Appl, Phys, 20, 48-58 (Jan. 1949).
10.6 See Refs, 215, 222, 271.
10.7 The Luminescence of Liquide in an Ultrasonle Field, 1. G. 「otorzki. J. Fia. Chim, URSS, 22, 787-792 (July, 1048). In Russian, Ann, Telecomanus, 3, 20408 (Now. 19.18),
10.7 Sound Wathes Clothes, Sci. Nev: Letar S5, 8.4 (Feb, 5 19.19). Haned on a letter in J, dconst, Soc, Amer. 21. 39 (Jan. 19.19).
10.8 Action Hydrolysante des Ultrasons (Ilydrolyzing istion of Ultrasonic Wives). PatekRe MAstagla and Anbudf P. Manous. C. R. Actul. Sci., Patris, 228, 18.1-686 (Feb.21, 1940).

10.8 See Ref. 25b.

10.9 Uitraschallbehandlung: Ein Neuer Zweig der Physikallschen Therapie (Ultrasonie Treatment: A Naw Braneh of Jhysical Dherapy), G, limbibr. Frergenz d, 56-59 (Nov, 19.47). Am, Tetecmamum. 3, $1719+$ (Apr, 19.48).

261
10.9 Contributo alla Tecnica della Ricerche sulla Azione Biologica degli Ultrasuont (λ Consrilutina to the 'leclspictere of Research an the Biological Aelish of Ulirasobic W'aves), datimen Giacosatist. Rteerca Sci, 18, 1585-159! (Nov,-Dec, 1948), It Italian.
10.9 Der Ultraschall in der Biologle und Medizin (Ultrasonic: in Jhology and Medicine), V. Koldeclek, NikdirWelt, Atrstria, 3, 35-38, 52-55, 70-71 (Mar., Apr, May,
 4, 21221 and 21222 (Jan .19 .19)
Action des Ultrasons bur les Graines et les Plantules des Vêgơtaux Supêrieturs (Action of Ularisonic: Waves on the Secils antl Sprouts of the Higher Plants). Jian J.razd. C. R, Nead. Sci., J'aris, 228, 595-5y) (Fel), IH, 19.40).
10.9 Sce Refs, 215, 235.
11. Waves and Viblentions
11.1 Leffetto Zener nel Metall ('The Zenter Eflect in Menals). |ralo Banducci, Ricerca Sci, 18, 1557-1563 (Nut:-Dec, 1948).
11.1 See NeJ. 2
11.2 On the Acoustic Doundary Layer in Front of Rigid Walla, I. Chemar, Arch. Lilektr, Dheraraghag 2, 136130 (Apr,-Nay, 19.18). In Germata,
11.2 See Refs. 276, 290.
11.3 Acoustlc Measurements of Polymer Physical Proper* ties. J. W. Ballou and J, C. Smitit. Bull. Amer. PJy's Soc. 24 (No. 1). 10 (Jath. 26, 19.49). Alsstract. 267
11.3 The Influence of Relaxation on the Two Velocity Field Modal of Helium II. Whderam Band and D. Mlivert. Pigys. Rev, 74, 38(i-39.4 (Aug, 15, 1048). Phys, Nhstr, $51,37 \cdot 4$ (Dec, 19.18).
11.3 Simple Arrangement for Mensuring Sound Absorption at Low Frequencios. D. II. Buekemanc ind C. WV. Kosten. Applied Sci. Res, B1 (No. 3), 205-212 (1948).
11.3 Sound Dispersion, Evereter F, Cox. I'hysics Tholay 2, 3.t (Feh, 1949), Summary of paper by the siame ant wor in J. Acoust. Soc. Amer, 21, 6-16 (Jan. 1949).
11.3 Parameters of Sound Propagation in Granular Absofption Materials, M, Fearaikn and G. Sacemboti, Nuove Cint. 5, 551-566 (Dec. 1, 19.18). In Jtalian. 271
11.3 Rigiditles of Polyisobutylene and Polyvinyl Acetate Solutions from Wave Propagation Measurements. Join D. Fierry, J. N. Ashworth, and W. M. Sawyer. Buld, Anser, गly's, Soc. 24 (No. 1), 10 (Jath, 2G, 19.19), Abstract.
11.3 Investigations of the Velocity of Sound in Rubber. F
 (Aus. 10, 19.48). In Cerman.

273
. 3 Velocity and Attenuation of Sound in Butyl and GroS Rubbers. R, S. Witrie, I. A. Alrowca, ind E. Gurth. Bull. Amer, Pıys, Soc, 24 (No. 1), 9 (Jan, 26, 1949) Abstract.
t1.t Reaction of an Acoustic Medium and Aconstic Radia tion Loss of a Clicular Plate. I. Jraumann. \%. Natirforsch. 3n, 3.10-350 (june, 19.88). In Germian.
11.4 Coefficiento di Riflessiono od Impedenza Acustica (Coefficient of Reflection unkl Acoustic Impedance). M, Fenrero and Cr, Sacianotr. Nuovo Cim. 4, 130-145 (June 1, 19.17). Anm. 'elécomuman. 3, 16783 (Mar. 19.48 .

276
1.t Acunbtic Impedance, C, IV, Kosrren, Ned. Tijdscher, 14, 300-316 (Nov. 1948). Jn Dttch.
11.4 Sur le Calcul des Bases Rayonnantes (On the Catculition of Radlating Bases). M, Parod and G. I'recuela. C. R. Acad. Sci, Jiaris, 226, 872-87.4 (Mar. 15, 19.18) Phys. Abstr, 52, 132 (Jan. 19.49).
11.1 See Refs, 2, 288,
11.5 Passage of Finite Amplituds Pressure Waves through Temperature Discontinuities, Bruwo WV, Augensitems. Jhys, Rev. 75, 521-522 (Fel), 1, 1949).

279
11.5 Experimental Measurement of the Density Field in the Mach Reflection of Shocls Waves, W. Bemaknes; D. IV. Weinish, and C. H. Flatchith, Bull. Amer, Plys, Soc, 24 \{No, 1), 22 (Jan, 26, 19493, Ahstract. 280
11.5 A New Equation for the Nor-Stationary Shock Wave. F. Cal. J. Chem, Mh's. 27, 106 (Jan. 194'),
11.5 The Thickness of a Slock Front in a Gas, G, R, Cows and D. F. Hoksic, Bull. Amer, Phys. Soc, 24 (No. 1), 22 (Jan. 26, 19.49), Abstract.
1.5 The Klnetic Theory of the Shock Wave, A. Inkins. Rev, Sci, [3aris, 86, 35-37 (Ian, 1, 12.18). In French, Phys, Abstr, 52, 126 (Jan, 19.9).
115 The Detached Shock Wave in Front of a Conical 28.3 at Supersonic Speeds. E., V, Laitoni:, Bull, Amer. Phys. Soc. 24 (No, 1), 21 (Jan, 26, 1940). Abstract. 28.4
11.5 The Flow behind a Stationary Shock, M. J. Lianmint. Phil. Mits. 40, 214-220 (Feh. 19.19).

285
11,5 On the Reffaction of a Shock-Wave at an Air-Water Interface. H, Polacitek and R, J. Shegazr, Bull. Amer. Plyg, Soc, 24 (No. 1), 21 (Jant, 26, 19.19), Ahatract. 280
11.5 Theory of plane Gas Waves of Finite Amplitute, 1 y , Quadi, Z. Angew. Math. Mech. 25/27, 215-2.32 (Nov. -

Dec. 19.17). In Geman. Phys. Nostr. 51, 3653 (Dee 19:8),
11.5 see Ref. 69.
11.6 On tha Radjation of Sound into a Circular Tube, with an Application to Resonators, U, Ingirb, Acta Polytech. Elect. Enteng. 1 (No, 8) 1--18 (19.88). 288
11.6 Propagation of an Amplitude-Modulated Sound Wavo
 $2,186-189$ (Apr, Mily, 19:48). In Germin. 280
11.6 On the Refiection of a Sound Wave at the Open End of On the Refiection of a Sound Wave att the Open End of
a Tube. L. A. Wernstrans. Wokk. Akad. Natul SSSR 58 (No, 9), 1957-1!60) (1947). Ia Ratsiaus. Phys. Abstr. 52, 122 (Ja11. 1949).
-1.7 Longitudinal Oscillations of Square Quartz Plates, R, Buchmans, \%, Ilyss, 118 (Nus, 9-10), 515-538 (19.12), In Geritatn, Ply\%. Abser, 51, 3656 (Dec, 1948), 291
11.7 Integral and Series Representations for the Different Types of Waves of Mathematical Physics in AxialParabolic Coordinates. H. Mucimioniz, Z, Phys, 124 (Nos, 3-6), 196-218 (1998). In German. Phys, Abstr. 52, 117 (Jin. J9.49). 202
J1,7 Forced Oscillations in Nearly Sinusoidal Systems. Marce Osciflations in Nariviriot. J. Jasth, Electr. Engro, OS, 8894 (Nar. 10.18). Aut, Télécomıии, 3, 177.13 (Junte, 1!-18),

293
11.7 Formule Faisant Intervenir la Forme dons de Calcule de la Frę̃uence de Rếsonance des Rësonateurs d'Helmholiz (Formula Tiaking Account of the Form when Caldulating thu Resonamt Freduency of Helmholta Resomators). D. Cier vet and J, Hanky. C. R. Acatl, Sci., Paris, 226, 1891-1803 (June, 1948). dtis, Tek comimun, 3, 198.43 (Oct, 19.48)
11.7 The Solution of Natural Frequency Equations by Re Thextion Methoda. J, L. B, Coorren. Quart, Appl. Math. 6, 179-183 (July, 19.18). Phys, Asitr, 51, Jolf (Dec, [9-18).
11,7 Electromechanical and Electroncoustical Analogies, 13 .
 Dansk Ingenipir forenting, Copenhagen, Sepr. 19.47). 1+2 p. French review in dan. Tefécommen. 3, 72 (Feb. 19.48),
11.7 The Approximate Solution of Linear Differentlal Equations, M. C. Gray aht S, A. Schaiduvnorf, Bell Syat, Fech. J. 27, 350-36it (A)r. 10.48). Arun, Tejecommut, 3, 18718 (Attא,-Sept, 10.18).

297
Sur la Synchronisation Sous-Harmonique (On SubSur la Synchronisation Sous-Harmonique (On Sub-
Jarmonic Syuchronzation). J vies Mas. C. J. Acal.
 Sci., Jaris, 223, 525-527 (Oct, 7, 1946). Piy's. Abstr.
119 (Jan, 1949).
11.7 Elementare und Komplexe Schwingungen (Simple and Complex Vibraimos. W. Lausums. Fust umd Ton 3, 3-17 (Jแม. 19.19).
11.7 Longitudinal Vibration of Bars with Non-Linear Intomal Friction. A. S. Nowick, Jull. Aner, Plya, Soc. 24 (No, 3), 7 (Mar. 10, 1949), Abstract.
Rocriprocal Propertios of Elnstic Waves in Anisotroplc Media, F, J. Posir, Proc, K. Ned, Nkad. Wet. 51 (No. 1), 6.5-72 (t9.48). In: Entilisi, I'lys, Nlatr, 52, 120 (Jatn. 19.40). ia de la Acustica y sus Correlaciones con Ia Teoria de los Circuitos Electricos (Whe Equations of Acoustics and the Corresponiting Equations for Electric Cirentis), E, Ricimatmer, Rev, Electrotech., 13. Nires,
 (Feh, 15:18),

302
ations
1.7 The Probability Distributions of Sinusoidal Oscillations Combined in Random Phase, M. Slack. I. Instn, Elect. Engrs, Part JlI, 93, 76 (10.46).

303
11.7 Proals of the Equation $U_{=}=(E / \rho)$) for the Velocity of Sound. W. W, Slatron, Amer. J. Phys, 17, 51-62 (Feh. 10.90).
11.7 Uber Einschaltvorglinge und Ubertragungsmasse Elektroakustischer Systome (Switching Plemomena ant Transfer Mtass of Electro-Aconstic Sysitems), R Stadlin, Mull. Tech. Telés. Teléph, Suisses 25, 187-19.1 (Aug. 1, 1947), Ama. Tétecommus. 3, 16257 (Veb) 10.18).
1.7 Sur les Vlbrations de Certains Systènes Elastiques dans un Champ Sonore (The Vibrations of Certibin Elatatic Systems in a Sound Fiedd). Thi, Vorem. Pablications Sci. Teclu. Ataist. Sir (No. 209).1-79 (19.18), Enclish sumantry in Phil, Mag. 40, 247 (Fel), 19;9), 306
11.7 Waves in Compressible Medfa, Basic Equations, Plane Continuous Waves. W. Wertul.t., Acta J'olytech, l'hys. 1 (No. 5), 1-37 (119.88).
11.7 On the Periodic Solutions of Non-Linear Partial Differential Equations, MI, E. ZJtabovisiki. Dokl. Al:atl. Nauk SSSR 56 (No. 5), 160)-172 (10.47). In Russtan. 1hys. Abstr, 52, 9 (Jan. 19.40).
11.7 See Rufi. 2, 12.4, 2.19
11.K Finger Tremor and Battle Sounds, A, S. Edwamids, J. Abnorm, Socinl Psychol, 43, 396-309 (19.88). Psychot. Absitr. 23, 583 (Fel. 19:19).

13. Unimbwatis Sound

On the Theory of Spherically Symmatric Inhomogeneoun Wave Guides, in Connection with Trupospheric Radlo Propagation and Under-Water Acoustic Propagation. H, Bremstra. Philips Res, Rep, 3, 102-120 (Apr, 19:48). Sci, Alostr. B, 2815 (19.48). sorption. J. M, Sunimanvsiky. Dokl, Akat. Natuk

SSSR 58 (No. 2), 220-2.32 (1947). In Russian, Phys. Abstr. 52, 125 (Jan, 19.19).

311
13.7 See Ref, 2
13.9 Underwater Listenng to the White Pornoise (Delphinapterus teucas). Withas: IE, Scubunit and Barhaba Lawhencle, Scirnce 100, 143-14.4 (Fela, 11, 19.19).
3.9 Whalen Found Loquacious, Sci. Nuws Letter 55, 112 (Feb, 19, 19.49).
13.11 Echo Sounding Equipment for Marine Suryeying Iu-
 соmиин. 3, 198.49 (Oct. 19.18), 31.4
13.11 Echo-Sounding Equipment for Marine Surveying. Brit. Sci, News 1 (No. 7), 21-23 (19.18). Aun. Tetecommun. 3, 20758 (Dec. 1948).
13.11 The Swedislı Deep-Sen Expedition, I!. Impresson. Nature, Lond., 162, 324-325 (Aug. 28, 19.88). Amu. T'téćcommun, 3, 20750 (Dec. 1948). 316
13,11n Submarine Detection by Sonar. A. C, Kimalik. Trans. Awer. Inst. Elect, Eingrs. 66, 1217-1230 (1917). 317
13.1 In Bearing Doviation Indicator for Sonar. O. 11. Scuuck, C. K. Sthmas, J, L. Hathaway, and A. N. Bura, Jr. 'Irans, Amer, Insi, Elect. Engrs, 66, 1285-1295 (19.17). Phys. Abstr, 52, 144 (Jan. 19.49).
13.11n Une Application des Ultra-Sons (An Applicotion Ultra-Sount). Rev, Trathith, France, (No. 18), 35-50 (Jan. 1918). Ann. Tetcomunan, 3, 18077 (Jume, 1948). French translation of article ou Somar, Ref. 127 in J. Aconst. Soc, Amer. 19, 267 (Jial. 1917).
13.1In Sonar, Rev. Teleg., Argentian, 35, 350-352 (Jume 19.47. Ann, Teterommun. 3, 18071 (Jинe, 1948). 320

Review of Acoustical Patents

Roniky W. Vounc:

Patemts reviewed below have been issitued by the United States latent Office on the dates indicated. Any opiniona expressed are those of the indivilatal reviewers and to mot necessarily rellect officiat views of organiations with which the reviewers are associated. Statements of fate are ordinarily bansel on the patents alone withont inctepenaleat verification Printed copies of pateats may be obtained from the Commissioner of Patents, Wanhington 25, D.C., at a cost of 2.5 cents each. A weekly subseription service to any selected sill. class is also availatile from the sanue wource.

Reviewers

Laurencr: Batchunder, Submarino Signal Company, Boston H. Mfussuchusetts

Lynn C. Holsas, Strambers-Carlson Company, Rochester . $\mathrm{D}_{\text {, }}$ Netu Jork
Grongr Kis, Triad Trunsformer MAnnfucturing Company, Las Anpeles \%, California
Fred W. Kranz, Somotone Carporation, Ehmoford, Netp Jork C. E. Nelson, Nelson Mufler Corporation, Stoughton, Wisconsin
Hale: J. Samenr, The Celotex Carporation, Chicarg 3, Illinais
D. B. Shorwela, Caterpillar Tractor Company, Penria S. Illinois
Frank H. Slaymakir, Stromberg-Cirisom Company, Rochester 3, New Jowk
Weinat Wathin-Dunn, Nawl Research Laboratory, I'ashington 25, D. C.

2,450,011
2.5 ACOUSTICAL STRUCTURE

Arthur D. Park and Norman A. Johnson, assignors to Armstrong Cork Company.
October 12, 1948, 6 ClaIms (Cl. 20-4).
The aconstical treatusent described consists of blocks or tiles of an incombustible felter! material, such as glass fiber board, cenmented to a wall or ceiling sorface, and a decorative surfacing of hirger sheets of glass fibre bouled that applied by athesive to the sotmd absorbent material, The advantages of a monolithic, incombustible, decorative treatment are cited. -HJS

2,420,686

4.5 HEARING AID AMPLIFIER

Harry B. Shapiro, now by judicial change of tame Harry B, Shaper, assignor to Sonotone Corporation. May 20, 1947, 9 Clalma (Cl. 179-171).

A circuit for a bearing aide amplifier is deseribert such that the gain of the amplifier will remain constant for soumd inputs up to a devel of 70 or 80 dl , that the gain will deerease for sobed inputs above aboat 80 dj so ats to reacha a maximams nutput with about 100 -th input level. Thus the amplifer will ast in the usual manner for inpuats below about a 70 -ab level anil so lackground noise and ther relatively undesires sounds will not be overemplasized in the insence of speech input, such as would be the case with ath atutumatic wolume control oper-
ating togive a constant power output. The circent includes a rectification of a jortion of the ottpme from the power tube, 1o provike a change of hias voltage on the control grid of the

Sirst tube, but in such a way that the bian is not sutficient to cause rectilication and accompanying distortion. The effect is nclieved in part by the screen grid circuit,--FWF

2,424,348

4.5 HEARING AID EQUIPMENT FOR CONFESSIONALS

Nicholas V. Casson.

July 22, 1947, 1 Claim (Cl. 170-1).
This describes a circuid for une in a clurch confensional in which there is a microphone in the priest's cubicte and a receiver in the culfiche of the penitent, so that the priest nay converse with a penitent baving deficient hearing. When the receiver is taken off its loool, the electrical circtit is closed and the hearing aid system is put into operation. The preseat motifitation prowiles that when the receiver is taken off its hook, there will be a visual signal as a lighted lamp in the priest's cubicie and also another signal such as an electric bell at some distance from the comfensional, ats at the rectory. The oljeet is to give ample potice when manthorized personts, such as playful children, might tamper with the hearing aid syntem. The distant sifnal can be turned of by the priest by means of a swited in his cubicle.-FVWK

2,424,935

4.5 HEARING AID ATtACHMENT FOR SPECTACLES George P. Kimmel. July 29, 1047, 9 Claims (Cl. 170-107).
This describes the monnting of a bome conduction receiver of a hearing aid ons las bow of a pair of spectacles, The object
 spictoons and becallie it is sometimes uncomfortab)le. The speectacle bow shotald preferably have a substantial cross piettion, and can be matle of plasite or ather suitable material which will resisit torxion. The rear-end portion of the bow hats an aperture extending downamardy and inwardly toward the head, this aperture portion beink reinforcest by a metal sileeve
 arotnd the bow, A rod or tongue fits into this aperture and
carres the bene conduction recever which rests abainst the mastuid bune with a pressure contributed by the torsion of the bow. Aljustment is accomplished by moving the tongue in the aperature,-FIVK,

4.5 EAR PROTECTOR

2,437,049
Rohort H. Sailsbury and Edward M. Oehser, ansignora to Consolidated Vultee Aircratf Corporation.
March 2, 1948, 1 Claim (Cl. 128-152).
This ear protector comprises a pair of cups of soft or flexilsle rubber adapted to eaclose the ears and also to extend around the bony structure back of the ear. These rubber cups are held in place by a headband with flexible connections to the cups so that the rims of the cups may alapt thennelves to tho contours of the ear and its vicinity, A stiffening disk is held in the flat back of each cup and covered with a sound abBorbing material,-FFWK

2,447,470

4.5 NOISE INSULATING RING FOR EARPHONES Joseph E. Valentine, assignor to Oxzyn Company. August 17, 1948, 5 Claims (CL. 179-156).
This is a construction to hold a small type earphone to the ear and to protect the ear from external noise, A circular carrier plate with a diameter on the orter of the major axis of the ear has mounted in it centrally a holder of a small receiver, which has attached to it an ear insert of soft material with a central hole for sound trinsmission to the car canal. The carrier plate has mounted on it a soft anmular pad to rest against the side of the user's head to conforn itself to the shape of the user's car, and large enough to cover most of the ear, The carrier plate with its attachments is held in place by suitable means.-下WK

2,459,325

4.5 BONE CONDUCTION UNIT

Hugh S. Knowles, assignor to Zenith Itadio Corporation. January 18, 1949, 2 Claime (Cl. 179-107).
This relates to a bone conduction receiver for use with a hearing aid and designed to transumit meelanical vibrations to the bony siructure of the user's leadd, being usially held rather tightly over the mastoid boose back of the ear, The present arrangement is designed to prevent excessive force of the unit against the head of the user by giving a warning of such excessive force, This warning or notification consists of a reduction in output dhe to a change in the mangentic air gap when the pressure becomes excessive, A screw and spring arrangement provide an adjustment of the pressure point at which this reduced efficiency becomes effective.-FFWK

2,436,384

5.1 SOUND RECORDING DEVICE

Harvoy Fletcher, John F. Muller, and Karl D. Swartzel, Jr., ansignora to Bell Telephone Laboratories, Incorporated. February 24, 1948, 12 Claims (Cl. 274-1).
Claim 6. "A device for recorcling hotucl waves in a sound field produced by a moving or remote sound source comprising a casing or shell adapted to be projected into said somut field in proximity to said source, a sound responsive member mounted within said casiug, \mathfrak{a} sound record median in cooperative relation thereto to record the sounds causing responses from said sound responsive member, and means operated by the movenunt of said casing to and through the sound field to move said recording medium relative to said sound responsive element, said last-memioned means lwing located inside satid easing or stell."-RIVY

2,447,018
5.1 THREE-MAGNITUDE RECORDER

Georgo Keinath.

August 17, 1948, 8 Claims (Cl. 128-2.05).
This is an athtomatic means for showing the relationship, between three variables, two of which are represented in the ustal Cartesian coordimates and the third is represented by the thickness or frequency of the recorded marks. In one embodiment, the sound of pulse heats is recorded as a function of time and the fightness of a tolroiquel fastenet to the arm.-RWY

2,450,933

5.1 HORN CONTROL

Lawrence D. Bell, Assignor to Dell Aircraft Corporation. October 12, 1948, 5 Claims (Cl. 177-7).
"The invention contemplates a horn control system for nutamodiles or the like wherelyy when travelling at relatively low speeds operator-actuation of the usuat horn control pushbutton an the atutomabile stecring calumn will result in production of a modulated horn signal of the intermittent and/or subdued "courtesy toon" 4 spe; whereas under higher travel apeed conclitions the same actuation of the horn control hetton will procure ustal, full volume horn sigmals for as long as the harn control button is depressed."-RWY

2,439,666
5.8 LOUDSPEAKER DIAPHRAGM SUPPORT

John F, Marquis, absignor to Radio Corporation of America. April 13, 1948, 2 CJaims (Cl. 181-31).

This is the patent on the RCA accordion-edge speaker,FIIS

2,440,078

5.8 RADIO CABINET AND SPEAKER MOUNTING

George F, Devine, assignor to General Electric Company. April 20, 1048, 3 Clains (Cl. 181-31).

By tilting the loutspeaker, it is possible to install it in a radio eabinet having limited vertical space, A reflector 32 directs the high freguencies out of the cabinet.--FHS

2,442,701

5.8 ACOUSTIC DEVICE

Edward C. Wente, assignor to Bell Telephone Laboratories, Incorporated.
Junc 8, 194B, 11 Clalms (Cl. 181-31).
A domed diaphragm for horn-type loulfpeakera is desicribed in this patent, Radial corrugations extend from the domed portion of the diapluagm to the supporting structure, 'The depth of the corrugations increases in proportion to the distance from the done.--FHS

2,445,276

5,8 ELECTRODYNAMIC LOUDSPEAKER

Franic Mabsa,
July 13, 1948, 8 Claima (Cl. 179-115.5).
The inventor has analyzed the performance of the conventiont directradiator moving-coil lomedspeaker loy familiar and straightiforward methols. From the analysis the inventor concluded that by a suitable choice of voice coil mass and diaphragm size, it is possible to make a direct-radiator leatr|speaker having an efficiency of 50 nercent,-FHS

2,435,031

5.9 DETONATION PICK-UP

John R. Burns and John M. Whitnore, assignors to General Motors Corporation.
January 27, 1948, 5 Claims (Cl. 171-209).
This is a magnetostrictive pick-up debigned for measuring the viluations caused by detonations within an internal comhastion engine.-RWY

2,435,231
5.9 ACCELERATION PICK-UP

Albert E. McPherson.

February 3, 1948, 5 Clalms (Cl, 201-48)

This is an acceleration pick-up of the strain gage type in which "the pick-up component hats strain sensitive wirts functioning simulaneously as an elastic sumperding chement and an axial guide."-RWY

2,435,254

5.9 DYNAMIC STRAIN PICK-UP

Walter Ramberg.
February 3, 1948, 3 Claims (Cl. 201-52),
This dynamic strain pick-up, buitable for recording aircraft vibration, is characterized by large voltage sennitivity, The

leaf springs 15 and 19 are so designed that there is nearly a linear relationship between the displacement of etement 9 and the current in indicator 23.-RWY

2,441,975

5.9 ELECTROMAGNETIC THROAT MICROPHONE

James Samuel Paterson Roborton, assignor to International Standard Electric Corporation.
May 25, 1948, 6 Claims (Cl. 170-114).
The microphone is an inertit-type nagnotic microphome. T'o reduce external noise piek-up, the case is isolated from the transilucer element, and athe from the plate which toucles the throat, by a flexible couplints,-FHS
$2,443,961$
5.9 VIBRATION PICK-UP

John M. Tyler and Vincent E. Thornburg, assignors to United Alrcraft Corporation.
June 22, 1948, 9 Claims (Cl. 171-209.)
A vibration pick-up is diclosed in which the "movable element," a pivoted arm, remains more or less atationary in space while the frame of the instrument vibrates with the oliget to which it is seewred. A cuil on the pivoted arm threats an air gap in a magnetio cirenit consisting of a permanent bingute with inter and ofter pole-pieces earved in partially toroddal slape. This construction provides maximum gemeration of voltage in the coil and permits magnet ice diamping of the pivoted armb-Gに

2,428,168

5.10 SEISMIC WAVE DETECTOR

Ccorgo B. Loper, assignor to Socony-Vacuun Oil Comapny. September 30, 1947, 11 Claims (Cl. 177-352).

The invention relates to means for insuring the firm engagement of a seismic wave detector with the wall of a dridl hole at any depth. It is operated from the surface in such a way that by the control of tension in atemension rope or the connecting cable, spikes fulerummed at sutitable points engeige ind digy into the wall of a hole while the detector is juresised against the opposite wall.一GK

2,449,085
5.10 SUBMERSIBLE SEISMOMETER SYSTEM

Raymond A. Peterson, assignor to United Geophysical Company, Incorporated.
September 14, 1948, 7 Clalms (Cl. 177-352),
The invention relates to means for the suspension aif seismumuters in water, giving efficient transmission or coupling io the seismometer of the seismic waves in the water, while eliminatiog most of the undesirable extraneous waves, It is carrial out by the use of a non-resonant platorm suspended at some distance beneath the surface of the water from a flom. A number of nitch foats may he grouped into a system dong a courst at which it is desired to receive seisnic waves,-GK

2,461,344
5.13 SIGNAL TRANSMISSION AND RECEIVING apparatus
Harry F. Olson, assignor to Radio Corporation of America. February 8, 1949, 6 Clalms (Cl, 179-1).
This is conecrned with a personalized sound system, in that an individual maty receive a sound sibnal withont disturbing others who do not wish to listen; or withont the knowledge of those for whom the sound is not intended, An electrical current of the desired audio sigmal irequency is modulated ly an ultratonic frequency and the resultant is connected to an ultrasonic loudspeakler which will produce modulated altrasonic compressiomal waves in the air. These ultrasonic waves are received and demodutated by a sinall device in the ear of
the listener, so that the listener will hear the origime turtiofrequencies, Such a device might consist of two parts, first a transducer with the nltrasonic sonnel input and with a corresponding electrical output, and secondly a square law transducer with the modulated ultrasonic electrical input and with a demodulated sound output containing the audio frequencies, These transducers might be of electromagnetic type simitar to telephone receivers, except that the square daw unit woudd not have a permanent magnet. Other types of transiducers are also possible. It is suggested that the ultrasonic toud speaker tre directed toward the listener,-FWK

2,404,026

S.16d METHOD OF AND SYSTEM FOR TRANSLATING SIGNALS

Joaeph G. Beard and Robert W. Harralson, asaignors to Radio Corporation of America.
July 16, 1946, 12 Claims (Cl. 179-100.4).
This patent is another in that group in which rof oscillations are used to obtain a voltage or current proprortional to a phyaical displacement, lis particular advantage lies in the fact that the resultant aigual is independent of amplitude and/ or mand frequency changes in the r-f oscillator and of physical shock and microphonics in the ascillatory circuit. In addition, the oscillator may be crystal controlled if such stability is desirable. These objectives are realized lyy meant of a balanced rectifier circuit, composed of diodes or other reatifiers 15 and 16 which have a common load resistor 21 and separate tumable input circuits 17-27 and 23-28. The inputs are tuned to the sane frequency, which differs slightly from the frequency of the r -f oscillator, and they are fel by the couphing coils 6 and 7 in such a manner that nornally equal and opposite voltages

are generated atrosis the resistor 21. However, the mobile element 29 is a comamon part of the tuning capacitors of the input circuits, and any motion imparted to it wind decrease the resonant frequency of one input and increase that of the other, thus causing a larger voltage in die first and a smaller voltage in the second, or vice versin, depending on whether the oscillator frequency is below or alove the frequency io which the inputs are normally tuned. The net resint is to generate a differential voltageacross 21 which is represientative of the displacement of the movable element. The claims cover numerous combinations and inclute the use of the methot for phonograph pick-ups and microphones.-WV-1)

2,418,501

5.16d PHONOGRAPH STYLUS MOUNT

Richard A. MacDonald, assignor to Flexograph, Incorporated. April 8, 1947, 6 Claims (Cl. 274-38).
In this invention che basic idea is that the stylus point is carried on the end of a short offset arm which is free to rotate about the axis of the main slank. The construction reminds one of a bed caster, It is claimed chat such a stylus, when playing a record, will antomatically arrange itself tangent to the record groove by all action similar to dat in which a
caster trails behind the leg of a bed when the later is moved laterally. Several constructions are shown, bat all are characterized by having the arm inseparably associated with the main shank and having the latter of such size as will fit a standard pick-up etheck, la one form the swivel elenent carries a second chuck in which a standard stydus may bu inserted. The inventor claims that the device is equadly eficacious for preventing unequal sylus wear and groveve damage in both hateral and vericall recordings, thongh no mention is made of how well such a device will transmit lateral vibrations to the associated ransdeter,--VVV-D

2,421,910
5.16d TURNTABLE DRIVE FOR PHONOGRAPHS

Herbert L. Hartman, assignor to The General Industries
Company.
June 10, 1947, 2 Clains (Cl. 74-206),

This invention pertains to an improved monnting for the idter wheel in rim-driven phomograph turntables, Otder designs are said to loe deficient in that the idler whed pressed with unequal forces against the turntable rim and the driving roller and/or the idfer monating plate allowed too much vertical play, which gave rise to speed variations and rumble. The present design is specifically concerned with eliminating vertical play in the particulir mounting wherein the idfer wheel is allowed a lateral motion along a horizontal axis which is free to rotate about an olfect vertical axis. The idfer wheel 35 in carried on the vertical shaft 24 which is firmly attacherl to the U-silaped mounting plate 20. The two sides of tho U, 21 and 22, slide in horizontal slots necurately cut in the projections $16,17,18$, and 19, of an I-shaped block pivnted on the vertical shaft 14, which in turn is firmly athached to the molor monnting plate 7. The I-block is provided with a vertieal ubbular flange which forms a sufficient bearing for the shaft 14 so that any rocking motion of the block is eliminated. A sjprimg 23 pulls the idler moumting plate and hence the wheel evenly against the rim 5 and the notor spinclle 24'. A stop 23' prevente disassembly when the uriutable is removed.-IVIW-D

2,426,061
5.16d ELECTRIC PHONOGRAPH PICK-UP OR THE CAPACITY TYPE

Rene Snepvangers, assignor to Radlo Corporation of America,

 August 19, 1947, 15 Claims (Cl. 179-100.41).This invention covers an improved type of phonograph pick-up, whercin the electrical sigual is ubtained from the
variations in the capacity of a small condenser formed by a stationary plate and a plate fastened to the movable elemente. The former is mounted vertically on an insalating block carried by the pick-up arm and with strch an orientation that its plane is paratled to dhe axis of 1 tse arm. The movable elcement maty be formed from variously slaped pieces of shest metal bent at right angles to make a verical phate and an extended essentially-horizonkal reed, or it may be slanped from restangular wire to give a horizontal flat section and a vertical silightly wedge-shaped portion. In every case the vertical plate, or a portion thereof, provides the secessary lateral conspliance. The stylus point maty be affixed to either end, though generally it is carried by the horizonal part, and the opposite end is firmly anchored to the jnsulating block. It is claimed that the various forms of the design result in (1) low drivingpoint mechanical impedance to reduce recorl wear and the effecta of arm resonantes, (2) high torsiontial stiffiness to prevent rotational motion, (3) low vertical stijfness to accomodate the motion due to pinch effect, (4) wide-range response, and (5) simplicity of falrication.-WV-D

2,424,697

5,16m MAGNETIC RECORDER
William P. Lear, agsiguor to Lear, Incorporated. July 20, 1947, 13 Clainss (Cl. 179-100.2)
The mechanical design for a magazine type of magnetic wire recorder is disclosed in this patent. The magazine encloses two wire reels, a level wind meehanism, nud a magnetic head structure. Also incorporated in the magazinc are locking brakes which are autonatically released when the magazine is attaeled to the recorder, an elapsed time indicator with linit switches, and a spring loaded idher which should tend to prevent wire breakage during periods of high acceleration. - LCH

2,425,213
5.16 m MAGNETIC WIRE TELEGRAPHOPHONE SYSTEM
David I. Sunstein, asbignor to Philco Corporation. August 5, 1947, 16 Cluinus (Cl. 179-100.2

This is an extension of some of the ifleas disclosed in Batent 2,458,315. Tranaverse wire recording is used. In this case, two recording heads are used as well as wo reproluting heads. In each case the beads are disposed at right angles to each other. This essentially gives two recording and two reproducing channels. One chamest is used for the audiosignal. The other is used for recording a control signal. The secondray signal can be used to control an expander if compression is used during recroding. It can also be used to achutate a motor which rotates the reproducing head structure to instore that the nudio reproducing head will always be aligned along the axis of lux corresponding to the audio recording,- LCH

2,426,838
5.16 m ENDLESS TAPE MAGNETIC RECORDINGREPRODUCING DEVICE
Harry B. Muler, absignor to The Brush Development Company.
September 2, 1947, 15 Claims (CL. 179-100.2)
This is a patent for a drive mechanism for an endless tape. The tape is taken from the inside of a spirally wound coil, then thrended around 4 driven fly-wheel 37 , at guide whecl 38 ,

then again around the tly-whed 37, and finally back to the outside of the spirally wound coil.-LCH

2,458,315

5.16 m METHOD AND APPARATUS FOR REPRODUCtion or angular magnetic recording
David E. Sunstoln, assigitor to Phitco Corporatlon. January 4, 1949, 18 Clainis (Cl. 179-100.2).

This patent discloses a reproducing system which is intended to compensate for the cwist effect in reproducing a transverse magnetic wire recording. Signals from two reproducing heads 2 and 3 are disposed at righangles to each other. The sighals from these two heals are used to modhate a pair of balineed modulatori 4 and 5 , The outputs from the modulators are added in a volinge adder and one of the side bands is separated from the other in a filter 8 . The outpat from the filter is fel into another halanced anodulator 9 whare it is demodulated and then filtered in a low pats filter 10 to give fi nilly an auclio output represented by the following eq̧uation:

$$
c_{21}=\frac{A B^{3}}{4} \cos (A A+\theta)
$$

In this erpuation, A and B are the amplitudes of the audion signal and the carrier, renpectively. M is the angular velocity corresponding to the ausiofrequency, and o is the angular position of the flux axis relative to one of the heads, This equation slows that the anplitude of the finat audio signal is independent of the angle 0 .-LClI

2,440,439

5.17 PERMANENT MAGNET ELECTRODYNAMIC TRANSDUCER
Walter E. Gllman, assignor to Permoflux Corporation. April 27, 1948, 2 Claims (Cl. 179-115.5).

This is a very detaided patent describing the construction of noving-coil earphones of the insert type,-FHS

2,445,486

6.4 DRUM PEDAL APPARATUS

Frederick J. La Londe.

July 20, 1948, 14 Claims (Cl. 84-422).
This drum pedal mechanism is supported on a bar netrly as long as the diancter of the drum. The bar is clamped at iti ends to the counter hoop.-RWY

2,446,508

6.4 DRUM PEDAL

Milton E. Crowell, asaignor to H. \& A. Selmer, Incorporated. August 3, 1948, 9 Clalms (Cl, 84-422).
"The primary object of the invention is to provide a device laving a beater, an operating pedal, and a tensioning spring wherein the relationship of beater to the operating pedtal is adjustable to regulate the stroke of the pedial rectuired to "ctuate the beater without varying the lension of the spring." -RWY
$2,449,032$
6.7 Playing bar

Olen HI, Yates.
Septomber 7, 1948, 5 Claims (Cl, 84-319).
Intended for the assistance of begianers playing Hawaian or similar guitars, the playing bar is so shaped that it facilitates the correct holdins of the bar.-GGE

2,449,124
6.7 MUSICAL INSTRUMENT

Arthur Horden Kimmons.
September 14, 1948, 1 Claim, (Cl. 84-267).
This guitar-like instrument has but three strings. The wo on the cutside are supposed to be tuned to the same pitch permitting the playing of the instrument by either a right or a left-handed player.-GK

2,449,890

6.7 PICK FOR STRINGED INSTRUMENTS

Robert C, Gatllek.

September 21, 1948, 2 Claims (Cl. 84-322).
The characteristies of several picks of different thickness are combined into one, the thickness of which is tapered from one end to the other.-GK

2,450,210
6.7 STRING DEPRESSOR FOR STRINGED MUSICAL INSTRUMENTS

Howard L. Sprague.

Septomber 28, 1948, 1 Claim (Cl. 84-315).
The invention consists of push-buttons supported in a frane that may be strapped to the neck of a lute type instrument. Connected with the buttons are depressors that may lave one or more fingers for tlepressing one or more strings simaltaneausly between frets for the production of tones or chords. It is intended for persons having large finger tips, who cannot accurately depress a string without interfering with adjacent ones,-GK

2,452,307

6.9 MUSICAL KEY CONTROL

James A. Koeht assignor to Central Commercial Comapny. October 26, 1948, 7 Claims (Cl. 201-55).
The invention relates to electric swithes intended for the use in connection with playing keys of electrical musical instru-
ments. A pluratity of such switches is arranged in such it way that, as a key is depressed, the switches open in sequence, each inserting an electrical resistance into a shant across the anlplifier input, This will cause a gradual increase in volume of the tone protluced, find also emables the player to control tha the tone prothured, and also enables the player to
volume by only gartly depressing the key,-Gie

2,457,986

6.10 TREMOLO DEVICE FOR ACCORDIONS

Walter Gerber.

Jantary 4, 1949, 7 Claims (Ci. 84-376).
An intermediate partition is provided between the frellows and the somuling section of an accordion. This partition las aperabures in in, one of which is covered by a reed, The reed is vilorated by the air tlow from the bedows, thus causing an amplitude tremolo. An operating button near the keyboard pernuts the dampink of the reed and exposes atpother opening in the partition permitaing the free passige of air for steady tones withont vibrato,-GK

2,458,653
6.10 DOUBLE VALVE FOR ACCORDIONS AND LIKE MUSICAL INSTRUMENTS
Renes Soybola.
Jantary 11 , 1949, 2 Clalms (Cl. 84-376).
The invention diseloses a double valve for accordions so armaged that the excess pressure between the playing blast and the atmosphere is first relieved before the sound holes are completely open. Closing is similar in reverse order,-GK

2,450,212
7.7 MUFFLER

Joseph J. Thomas
September 28, 1948, 4 Claims (Cl. 181-43).
In this mufler construction cold air is drawn jato the mufler Iny a sort of venturi action or "injection cones," It is clatmed that this action will eliminate smoke lyy burning unused gitacs and will also cool the mumfer-CEN

2,452,723
7.7 SPARK ARRESTER SILENCER

Roland B. Bourne, John P. Tyukewicz, and Arthur E. Chase, assignors to The Maxim Silencer Company.
November 2, 1948, 3 Ctains (Cl. 183-94).
This patent reports an improvement over carlier spatk arresting numfers. The backpressure of the centrifugat spark arrestor is reduced by a system of vitnes which decrease the arrestor is reduced by a system of vines which tecrease
rotational velacity of the gas leaving the silencer, -CEN
$2,453,240$
7.7 ACOUSTICAL WAVE EILTER FOR PNEUMATIC HAND TOOLS
Gustav V. A. Malmrob, assignor to International Busineas Machines Corporation. November 9, 1948, 1 Claim (Cl. 181-48),

The exhanas of a pacumatic land tool normanly has an objectionable siren effect, In this patent a samall collectiats chamber in combination with iss outet slats form a wave filter or mufler. It is claimed that this construction probeleces only a high pitcled hissing sound instuad of the lower frequency siren-like somul.-CEN

2,455,965
7.7 WET-TYPE WATER-SEPARATING STEAMINHIDITING EXHAUST MUFFLER

George Wohtberg.

December 14, 1948, 12 Clains (CI. 181-52).
This patent deseribes a mutiler in which water is mixed with the exhaust gas in order to fuench sparks and restuce exhaust noise. The water is then separated from the gas by centrifugal action and the gis is heated so ati to reduce the visibility of the stean in the exhatest. This exhaust system hation been designed primarily for submarines in order to prevent their detectim in wartime.-CEN

2,456,512
7.7 MUFFLER FOR INTERNAL-COMBUSTION ENGINES

George V. Johnson.
December 14, 1048, 3 Claing (Cl. 180-54).
For certain applications, it is essential that all sparks be eliminated from the exhatsi if internal combatstion engines. This patent describes at muffler in which the exhaust gas is directed at the strface of at tank of water so that the eparles are: quenched in the water. It is claimed that munting is atccomplishled by expandiug the nais atoove the water iund by "splashling the water about." It appears that the patent is limited to the construction in which the side panels of the mufther are an integral part of the classis,-CEN

2,416,353

9.6 MEANS FOR VISUALLY COMPARING SOUND EFTECTS DURING THE PRODUCTION THEREOF
Barry Shipman and Robert H. Guht,
February 25, 1947, 10 Claims (Cl, 35-1).
Though other applications are posible, this invention is essentially a training device, by means of which the instantaneons wave form of the sound produced by a pupal can ine compared with that of a "teacher," vither live or recorderl, The siguals derived from the two sources are anulified in separate chanmels and viewed on two oscillographs, placed close toget ter, or on onte oseillongraph. In this laver case, the signals are fed to an electronic swiveh which simples first one atd then the other at a suficiently rapin! rate to catse two separate araces to appear, one above the other, on the face of the CR cube. At additional feature is a meats for varying the sweep rale of the oscillographis mota to get instantaneonsisy a synchronization with the fundamentil of the signal. This is usefut in cises where the pupil is singing or playing a musical instrument, and it is accomplishod by using a device nimilar
 modifies the sweep rate either directly, by intodneing different components into the siveep circtat, or intirectly, by actuating a relay which does the same think. A ntanitoring londspater is incladed in the apparatus,-IVIV-D

2,438,526

13.11n SYSTEM FOR DETERMINING THE DRECTION OF A SOURCE OF SOUND
Charles H. Waterman, assignor to Submarine Signal Company.
March 30, 1948, 2 Claims (Cl. 177-352),
Many bearing deviation indicators usen in somar operate on the lolve connparison principhe with a split hydrophone. This patent describes a circuit for intensifying the difference between the two voltages to be comparel. The two signals from the split hydrophome are fed into similar amplifiers. A part of cach out pas is rectifies and used for differemial control of the amplifier gains.--Li3.

2,438,580

13.1In COMPENSATOR FOR DOPPLER EFFECT O. Hugo Schuck, assignor to the United States of America. March 30, 1948, 5 Claims (Cl. 177-386),
In somar echo ranging eduipnent a device called an own Doppler nullifier eliminates the frequency shift caused by the motion of the searchith ship. Dhe such deviee is described in this patent. By either mabail or automatic means a capacitance is varied in proportien to the proxiuet of the shipp's speed by the cosine of the relative bearing of the sotmel heam. This capacitance controls the uning of either the tranmather or the reciever so an to compensite for the Doppler effect of the ship's motion. Whatever frequency shift remains between the trinsmitted signal and an echo is then due entirely on the motion of the kargel.--I. 13

2,443,647
613.11n ELECTRICAL APPARATUS

Charles H. Waterman, assignor to Submarine Signal Company.
June 22, 1948, 1 Claim (Cl. 234-1.5),
In sonar eclo ramging or depth sounding it is common to record the eclowes on a clart of special papar. A stylus, traveling over the paper, profleces a mark when an electric signal is applect. Avalable recording pibper has a dynamic range between the faimest and the dirskest mark corresponeting to abone 7 d 解 in the electric signal. By a compressor cirenit described in the patent this 7 -flo range at the stylus is mate

2,444,0069

13.11 n SYSTEM FOR RECEIVING SOUNDS IN

 THE PRESENCE OF DISTURBING NOISESLeon J. Sivian, assignor to Bell Telephone Laboratorles, Incorporated.
June 29, 1948, 4 Clajns (Cl. 177-386).
Interference from a local source, suth ats a lisiening shiph's own propeller, can la reduced when two hydrophones are connected in opposition. One bylrophone is sitimess controlled and presisurt operatent. The other is mass controlled operated by presinfe gradien, Pamoxically, they are focated the close an possille to the disturling source. The directionality of the pressitre gratient hydrophone is hetpful, batt the innportant effect is an inherent properiy of somed propagation. A pressure gradient has two components. One varits inversely with the distance, and the ofter inversely with the sptare of the distance from the source. Close to the solures, the inverse sifuare component predomimates, and prokinces the major protion of the rasponse of the gratient hytrophone. ff the two hydrophones have equal and opposite responses to the interference, the presture operatesi me gives the predominant response to a signil from a remute source. Because the phase spontse to atween the contaponents of pressure gradiem varies athle belween the conthponents dif pressure pradiemt varics
with distance, the interference can be exactly batanced aut only at a single frequency. However, if the hydrophones are sequatated froth she anterce by $1 / 20$ of the wive-lengith of the highest frettenacy used, the interference is reducerd at least 20 decibels. Obviusty, the mility of the method is limiterl Io very low frequencies. A mathenatical andysis is given in fae patent.-LB

2,437,088
13.11t MICROPHONE ASSEMBLY

Gabriel M, Giannini, assignor to Automatic Electric Laboratories, Incorporated.
March 2, 2948, 5 Claims (Cl. 170-116),
This patent descrines a clitectional mierophone whith can be mounted on the periscope of a subbuarine. This microphone
is constracted so no damage resulis when the sulamarine is submerged.--FIS

2,437,270

13.11t MAGNETOSTRICTIVE COMPRESSIONAL. WAVE TRANSMITTER OR RECEIVER
Robert L. Peek, Jr., agsignor to Bell Telephone Laboratories, Incorpotated.
March 9, 1948, 8 Claims (Cl. 177-386)
The maknetostrictive core of this framaner is in the form of a ractangular lowy which can be rearfity asisembled as a stack of fatmations. Two opmosite siftes of the rectamgle afe the aclive fegy which exgmad and emmont in longitudinas vibration, The armo of the core which fom these fers are effective ondy as combecting lisksi in the syestern. The core is folarized by a permanent magnet lavisg is poles near the ends of ome arm. 'The flux from the magnet divides fetween two gaths in the core. The usefut flux flows through the two two gaths in the cort. The asedh flux gows throtgh the two fifx takes the shorter path through the arm betweco the poles. Aux akes the shorter path through the arm betweco the poles. A portion of this arim has its cross secton reduced dy a siot
to provide a high reluctance for the unwanted polarizing flex: Since the reluctance of the core is relatively high at aignal frequencies, the constriction at the slot does mut significuntly increase the refuctance to the afternating flux aromal the rectangular core,-LI3

2,437,282

13.11t ELECTROACOUSTICAL TRANSDUCER

Edwin E. Turner, Jr., assignor to Submarime Signal Company. March 9, 1948, 8 Clalms (Cl. 177-386),

This patent describes a magnetostrictive transhacer of a type commonly used for eche ranging or depth sounding. λ farge number of nagnetosifictive inloss 7 are bectred by forced lit joints to the back of the diaphangm 1. The diaphrigm and tubes constitute a resonant bati-wave-length vilizator, with a nodal plane in the tubes but close to the diaphragm. Each vibrating tube 7 is sirroumbed by a coil 12 which is supporied by the cover 5 . The transducer is politrized by dinico rods 13 intersperged between the tubed, The magnet rofle are abion supported by the cover, and extend into cheiratace holes in the diaphragm,

For frequencies between 12 and 30 kilocyeles per secombl, trinsducers of this type are made with diaphoghos some 16 inches in dianeler. Secondary lobes in the directivity pattern are redaced hy disisibiting the driving force so that the diaphragm vibrates as a clamped edge diok. This shading i_{s} accomplisleci by anmalar grouping of the coils and by appropriate connections of the grotpss, of course, the cifrectivity pattern in receiving is the same its in transmitting,-I. B

2,438,925
13.11t MAGNETOSTRICTIVE SUBMARINE SIGNAL TRANSMITTER OR RECEIVER
Hubert K, Krantz, assignor to Bell Telephone Laboratories, Incorporated.
April 6, 1948, 7 Claims, (Cl. 177-386).
Varions matretostriecive iratseducers are describes in which the attive element is a hollow cylinder in radial vibration The eylimfrical core may be a sanck of ambular liminations or a sibirally wothed ribhen of magnetostrictive materiad, The core is linked with a toroidhl coil. This assembly is protected core is linked with a toroidal coil. This assemblity is protected
by a surratnding housing ind an internal piecas of rabler by it surrotnding lousing ind atn internal pieco of rabler.
Onfy the inner surface of the vibrating ring is acoustically Only the inner surface of the vibrating ring is acoustically
compled to the water medimm loy the rubiber. The ruber cotpling netuber may be a solide plag, with one end in contact with the water, and the mher end backed up by a metal resomator, Anodier emblodiment has suveral cores arringed coixially iround a rubber thibe, open to the medium at one or both ends. Jota directional characteristic is controlled in this case by suitable spacing of the cores and appropriatle phasiag of the coils. A bruatd frequency response can be motithed with several cores, of progressively dimerent size, ats sembed on a conical rebliter tithes,-1.13

2,438,926

13.11t MAGNETOSTRICTIVE SUPERSONIC TRANSDUCER
Edward E. Mott, assignor to Bell Telephone Laboratorjes, Incoporated. April 6, 1048, 8 Claims (Cl. 177-386)
A compation to the Krantz Patent No. $2,438,925$ shows further variations of the hallowe cylituler priteciple, with particular emplasis on the type $\mathbf{M}-5$ trausducer. In this design, fourteen colp-shaped elamenta are monated in a plate array The rings 14 are surrounded by pressure rulease thaterial 11a and have negligible acontstic loading on thele outer situfaces, Radiation ocettrs at the inmer surfaces where the rings are in contact with the liquid medium. The cavities are clased at the back by lead plates $\$ 3$ which rest against a Corprene sheet 10. Each lead backits plate, together with the adjacent latf of the liguid in the cavity, forms a cuater waveleagele resomator at the operatitg frequency. Trathiducers of this type have beern buta for operation over at o-kiforycle fand with a mid-frequency of 25 kilecycter per second.

Fig. I.

Fifi, 2,

Each ring it contains a spiritly wound eore of maknter alrictive materian, impregnatel with planolic material to
prevent parisitic vibration. The core and its torodal eoil are prevent parasitic vibration. The core and its toroblat eopil are
modded in more phenolic material in which conpur dusit is modded in more phenolic materia, in which comper dusit is
dispersed for better thermal conductivity. Design data for
the core include leat treatment and magnetic properijes of two magnetostrictive alloyg. Hy suitable design, efficiencies as high as 88 percent have been obtained for indivithal riag ctements.-L.13

2,438,936

13.11t ELECTROMECHANICAL TRANSDUCER

Warren P. Mason, assignor to Dell Telephone Laboratorien, Incorporated,
April 6, 1948, 1 Clafn (Cl. 177-386).
The beam of a somar transducer may the broadened by a lens which also serves the function of a sound window in the housing, The material suggested for the lens is a symbetic ribber which las a higher velocity of propagation than water Accordingly a convex lens catsees divergence of the sound. Excessive thickness of rubleer may be avoided with a liresnel fens shaped like the glass dens of a searchlight. A single rubber lens permiss spreating the beam to a total width of 45°. This angle can be doubled by placing a necond lens in front of the first. -113

2,440,903

13.11t UNDERWATER TRANSDUCER

Frank Massa, asajgnor to The Brush Development Company. May 4, 1948, 15 Claims (Cl. 177-386),

A fexible lrose, with stmall transducers spaced at frequent intervals along its several landred feet of length, is designed to be towed through the water. Requirements of watertightness, tensile strength, and ability to withstand explosions at clome ringe, are all satisfied by a rubler hose reinforced with stress cords, Because a liose of this kind is not acoustically transparent, windows of plain rubber must be inserted where the transelucer elementa are located. Each trataducer, with its windows, is contained in a metal housing which also serves at a splicing sleque to join adjacent lengtho of lose. Either piezoelectric or magnetostrictive elements may he used. The details of the rather intricate construction, und some of the assembly processes, are described at considerable length,-LIS

2,443,177

13.11t SUBMARINE SIGNALING APPARATUS

John T, Beechlyn, assignor to Submatine Signal Company. Junc 15, 1948, 15 Claims (Cl. 177-386),

A long magretostrictive tube is divided by flexilde couplings into sections of suitable length. Each coupling is formed by expanding a portion of the tube iteslf into a bead which is compliant to longitudinal vibration, The section butween tubes have longitudinal and circumferential resonances which tubes have lomgitudinal and circumberential resonances which
may be separately chosen jang desired relationship. A may be separately chosen in any desired relationship. A
variety of designs are iltustrated, some with arrays of several variety of sesigns are iltustrated, some with arrays of several
tubes, The inlses are watertight nud may be immersed directly in the sound medium, Intermal electric windinge may be arranged for either circumferential or longitudinal magnetization of the tulses.-1. 13

2,443,178

13.11t PIEZOELECTRIC VIBRATOR

Hugo Benioff, assignor to Submarine Signal Company, June 15, 1948, 5 Claims (Cl. 177-386),
A resonant transelucer is described which is very similar 10 one covered by Patent No. 2,406,792 [Reviewed J. Acous, Soc. Am. 20, $8 \mathrm{t}\left(\mathrm{t} 9 \mathrm{H}_{8}\right) \mathrm{J}$. In both versions, the crystals are cemented in recesses in resonant metal blocks. The blocks are attached to the back of a radiating plate,-LB

2,444,049
13.11t PRESSURE COMPENSATED SUBMARINE SOUND TRANSMITTER OR RECEIVER

John H. King, assignor to Bell Telephone Laboratories, fune 29, 1948, 5 Claims (Cl. 177-386).

In calibrating hadroplones, in commonly used soarce of low frequency sombl is the type 113 projector. Essentially, it is the well-kbown Bostwick speaker iuhapted for underwater tase, Since the thin compliate diaphragut of this transeducer cannot withstand apprecialde differance between external and internal static pressures, a mechanism is provided to balince thent within 0,02 pommd per square jacis, Whertever the ex-

ternal pressure exceeds the internal, water rising through the tube 38 lifte a float in the clamber 30 , thas closing a microswiteh 35, 'this switeh energizes a solenoid valve which releases compressed air from the reservoir 14 and 15 jnto the interior of the housing, Wheorever the intermal jresistre exceeds that of the water, the valve is closed and the excessive air is vented through the tail pipe 50 . The batl check valve 46 and 49 prevents accidental tlooding of the projuctor, -LB

2,444,061

13.11t MAGNETOSTRICTIVE DEVICE

Robert L. Peek, Jr., assignor to Bell Telephone Laboratorics,

 Incorporated.Jute 29, 1948, 11 Claims (Cl, 177-386),
A block of laminations 15 is supported at the nodes of Alanaral vibration for its fundamental mode, The supports 13 are the pole pieces of a permanent magnot 14 . The signal coil

19 Inases through a glot in the laminated block. Altermation flux flowing around the slot add!s to the polarizing flux on one side and opposes it on the other, If the laminations have
suffient remanemee, the pernament marnet may be elimimated. The supports 13 may then be of resilient rubber. The base 10 is only the back cover of a complete sonar translucer, in which the blocle 15 is coupled to a diaphragnt by a patd of rubler, The device has alvantage at low frequencies because the flexural umde requires relatively small dimensiuns, A block $2 \frac{1}{2}$ inches long resonates at 5 kilocycies per second.-LIB

2,444,911

13.11t ACOUSTIC STRUCTURE

Hugo Benioff, assignor to Submatine Signal Company. July 13, 1948, 2 Claims (Cl. 181-0.5).

To avoid turbutence, sonar tramsilucers are commonty streamlined by a surrounding housing, or dome, of thin steel. The thin steed shell is reasomaty transparemt to sound at normal incidence, At oblique incidence, however, reflection
or reratiation occurs an a result of transerse waves in the whell. The dome described in this patent is designed to damp out the transiverse vilutation. Inside the steel shell is a second shell of aluminum, and the thin space between the two is filled will a viscous stibstance suth as apphalt or pitch, -L 1

2,444,967

13,11t OSCILLATOR
Edwin E. Turner, Jr., assignor to Submarine Signal Comapny, July 13, 1948, 6 Claims (Cl, 177-386),
This patent describes a sonar transducer in which concentric maknetostrictive tubes are secured to the lack of a radiatiag plate. The tubes distrilute the driving force over the entire radiating area, which may be two feet or more in diameter, Exciting coils art located in the anmutar spaces between the concentric tubes, - 1.13

Program of the Thirty-Seventh Meeting of the Acoustical Society of America

Hotel. Stather, New York City, New York

May 5, 6, and 7, 1949

Acoustics In Communications

1. Invited paper in Hahey F. Ohion, RCA, Primetom, New Jersey.

Contributed Papers

2. Tho Acoustic Impedance of Closed, Rectangular, Loudepeaker Housings. Willard F, Meleker, Frank M, Slayhaker, and Livn L. Merulic, Sifomberg-Carison Company, Rochesier, New Jork (15 min).-Direct-radiator loudspeakera are often mounted with the back of the diaploragm working into a completely enclosed space, Conventional theory states that when the maximum linear dimension of such an enclosure is amall compared with the wave-length, the acoustic innpedance which it presents to the loudsjeaker is capacitive and is given by the expression $Z=-j / \omega\left(V / p c^{2}\right)$, where V is the enclosed volume. Since it has not been establiabed how sumall an enclosure must be before it is "small compared with the wave-Jength," the foregoing expression is frequently used, at low audiofrequencies, to calculate the acoustic impedancta of closed loudspeaker hotsings, and in many cases ita use results in considerable error. It is slown here that while the impedance
of a closed, rectangular housing is capacitive at very low frequencies, it passes through zero as the frequency increases and becomes ithat of an inertance as the frequency of the first normal mode is appronched, For a typleal housing, $11^{\prime \prime} \times 22^{\prime \prime}$ $\times 22^{\prime \prime}$, the point at which the impedance presenter to a very samall speaker pasies through zero occurs in the vicinity of 70 c.p,n, a at this frequency the maximum linear dimension of the enclosure is less than one seventh of the wave-length at this frucpuency. Thase resulas are ubtaned by following methads given hy Morsu for determining the pressure distribution threughout a robu. Assuming a point-somece loudspeaker, the pressure at the sotrce is calculated as the bummation of the pressares due to the normal moders of the enclosare. Measurenent of the pressure at the back of the loudspeaker diathragm support thiy analysis, Fromin measurements of the pressure distribution over ihe surface of the loudspeaker diapliragni, we may deduce that the magnitade of the acoustic impedance which the enclosure presents to the latidspeaker cliaplaragm and the frecquency at which the reactance becomes zero depend upon the dimensions of the loudspaker diaphragm as well as the dimensions of the enclosure.
3. Non-Linear Distortion in Dynamic Loudspeakers Due to Magnetic Effects. W. J. Cunningima, Jole University, New Haven, Connecticut (15 min.). -Two sources of non-linear distortion in a dynanic londspeaker are considered in this discussion; both are related to the magnetic elaracteristics of the driving mechanism. The first type of distortion arises due to a force of attraction luetween the voice coil, carrying a current, and the iron of the field structure. 'This fores varie as the square of the current and produces second harmunic distortion. The force may be related to the space mite of change of gelf-inductance of the voice coil as it moves in the air gap. The magnitude of the clistortion produced in this way may be several tentlis of one percent, and is greater for low frequencies atid large currents, This distortion may be reduced by proper proportioning of the voice coil and field structure, and by using a short-circuited winding on the fied structure, The second type of distortion arises due to nonuniformity of the magnetic fiedd in which the voice coil moves. This effect is well known quatitatively, but equations are given here for its quantitative evaluation. These equations indicate that the distortion characteristically is less than one percent, and is greater for large amplitudes of motion. If the voice coil is centered in a symmetrical field, only odd-order distortion is produced. If the field is not bymmetrical about the voice coil, even-order distortion is atso present. This distortion may be reduced by proportioning the voict coil and field structure so that the mean field in which the coil moves remains as constant as possible.
4. A Continuously Adjustable Filter for Audiofrequencies. Glenn E. Tisdnar, Yale Uuiversily, New IIaven, Connectionl (15 min .).-An electronic instrument has been developed to operate as a filter with cut-off frequencies continuously ado justable over the audio spectrum. The circuit consists of a low-pass and a high-pass network in the form of four-terminal impedances. These may le used singly or connected in tandent to give band pass action. A single control selects the cult-oif frequency of each network over a range of 10 to 1 , white a decide switch extends the over-all range to 100 to 1 , or more, The low pass section provides a pass band fat within 1 dll below the ctt-of frequency. Attenuation past cut-off is at the rate of 18 db per octave down to the noise level of the circuit. The high-pass section provides a pass band flat within 2 db above the cut-off frequency. Suppression is moru than 32 db for the first octave helow eut-off, and the attenuation continues to increase down to the mise level. Noise is at least 60 clb below a sigtal of one volt. The voltage atenuation in the pass band of the complete filter is about 6 dib. The principle of operation of the instrument is lased on attive feedback networks using only resistatue and capacitunce. The variable elements are ganged resistors, whose values may be in error by several percent widhout affecting the performance described, Because there are to high gidn stiges in the circuit, listortion and noise problems are reduced to a mininuum.
5. On the Propagation of Sound in Narrow Conduits.* Ossan IK. Mawamd, Markird University, Cambridge, Massachusetts (15 minn). -The atalysis of the propagation of sound in narrow tubes has usually been restricted to shapes yielding tractable mathematien expressions. A grtat number of practical applications do not fall within these categories and avait a solution. An approximate solettion of sufficient acenracy for marrow tubes of arbitrary shape has been derived. The derivation has been applied to a multiple capillary tube formed by filling a condhit with circular wires, a device
often used as a high acoustical impedance. The theoretical predictions cleck sitisfactorily with the experimental results It is believed that die results of the athalysis will be useful to other similar applications.
*Tha work was mumerted Ita part ly the ONiR umier troject Order X a Contract N Sori-7h
6. Simplifed Acoustic Impedance Measurements. R. Wo Leonarn, Unitersily of California at Los Angeles (15 min.), This paper describest at impedance meaturing assembly consisting of a pision and pressure microphone arranged in such a manner thit the ratio of the pressure to the particie velocity may be meabured in both magnitude and phase at the burface of the piston. The assembly measures the driving point impedance at the surface of the piston. The sample to be measured is confined in it tube of diameter ergual to that of the piston and is placed almost in contact with the vilefating Gurface of the piston, Thus, the pressure and particle velociey at the surface of the sample are prescribed by the velocity of the piston and the specific acoustic inuredance of the simple. Constructional detaiss and performance characteristics of the assembly are given.
7. The Least Discriminable Intensity for Random Noise, J. Donalip Itarats, U. S. Naval Medical Resentel Laboritory, U. S. Natal Submarine Base, New Lamdon, Connecticut (15 min.).-When a contimotss white noise is increased in intensity for one becond every fifth second, a subject can be asked to judge when such increases ocenr. A device using moving tape to record a subject's reffenses largely eliminiates invilid julgments. Under these conditions, the just moticeable invilid julgments. Under these conditions, the just moticeable
increase was measured at cach of several sensation levels increase was measures at cach of several sensation tevels found as the over-all sensistion level decreases from moderately loud to very weak. Differences between the present data ind previous experiments can, however, probibly be attributed to differences in the manner of computing zero sensstion level. The just noticeable indrease which is the largest theoretically possible is inferred to be something less than 3 db , reasoaing from the psychophysical curve for the noise us, no-moise judement. The just noticuable difference is fotind to be bollewhat smaller thain by the above method when the suljeect is forced to judge whether the second of two short Hoists is louder or softer than the first. It is possible that this secom method drives the subject more nearly to his physiologicil linit. If so, it shoutd perlaps receive speciat atteation,
8. Uniform* Speech-Peak Clifping in a Uniform* Signal-toNoise Spectrum Ratio. Danimi. W. Makins, RCA l'ictor Division, Camden, Nezu Jersey (15 min.). - A graphical ftule. tion IV (r, c) las been determined experimentally; in which ! is word articulation, r is the relative Jevel of unelipped specel and the noise, and c is the anount of uniform, symmetrical speech-peak clipping. Preemphasis of the speech signal gave at approximately uniforin specela spectrum prior ta clipping. Uniform, randon noise was mixed with the clipped spoectl before postequalization, making the final noise spectruna similar in shape to the speech spectrum. The real-ear response of the earphones was compensited electrically to yied a uniform orthotelephonic response for the communication system, in the frequency range contributing significintly to articulation index. For constant clipping c_{n} the function $W\left(r_{1} c_{n}\right)$ tion index. For constant clipping c_{n} the function $W\left(r_{1} c_{n}\right)$
appronches $W(r, 0)$ as a limit for sufficiently farge value of r, approaches $W^{W}\left(r_{0}\right)$ as a limit for sufficiently farge values of r,
For $c<r+5$, W^{\prime} t $W^{\prime}(r, 0)$. For the case of no clipping $W^{\prime}(r)$ when transformed to $W(.1)$, A being articulation index resembles closely the curve by pollack.

Acoustics in the Arts

9. Invited paper ay Whamer T. Daktholomew, Iforval Unirersity.

Contributed Papers

10. The Acoustics Department of the Julliard School of Music. Harky L. Roun, Itilliati School of ifhsie, New York (15 min .). -In recognition of the ever increasing dependence by musicians upon acoustical engineering techniques, an Acoustics Departonent was established in the Juilliard School of Music in 19:77. This Department has the following functions: 1 . To conduet courses in mansical acoustics for degree and diploma students. 2. To record stadent and faculty perfornances and all School concerts. 3. To supervise the teclanical aspects and proluction of the liroadcasts of School cancerts. Some observations on the work of tha Department are made and discussed.
11. Analygis and Synthegls of Speech-Like Sounds.* Franklin S. Cooper, John M, Borst, and Aivin M. Lhmmana,*** IIaskins Laboratories, Netv York' (15 min.). -The sualy of the perception of speech is aided by instruments capable of repre: senting physical patterns which are complex in frepuency, time, and intensity. The sound spectrograph developeed by Potter and co-workers provides visual patterns which are highly suggestive for the isolation of the distinctive aspects of auditory patterns. However, comparison and juthoment by ear are desirable, and this requires additional insirunsentation to play back modified spertrograms, or completely synthetic spectrographic patterns which differ only in the particular characteristic under examination. The spectrograph developed for duese studits records on film, portraying a dymamic range of ca. 40 dth by a linear density variation of 2.0 . The use of a Photoformer to control the recording light permits compensahotoformer to control the recording light permits compensa-
tion for non- jinearitics of other components, or the intentional introduction of high contrast (compression), black-1o-white reversal, or intensity-contour characteristics into the spectrograms, The pattern playback uses these spectrogmus directly, or after retouching or printing, to control the modulation at syllabic rates of an optical scamning beam which is then converted into sound. Synthetic spectrograms, hand-drawn on a transparent meditm, are used in a similir manuer. Spectrograph and playback were designed for apecific application to speech-like sotuds and to studies of tha perception of such sounds. Design conbiderations and performance data are discuased.
 ** Also, Wealeyan Untveralty.
12. The Speating Machine of Wolfgang von Kempeten. T. H. Tannoczy, Dudapesi; (Abstract and Presentation by Honter Dudley, Bell Telephone Laboratories, Inc.) (15 min.),-WVolfgang van Kempelen made significant contributions to the investigation of the luman mechanism of speech production around 1770-90. During the preceding century there had heen considerable speculation on various aspeets of speech by linguists, teachers, physiologists and othurs. Kempelen became interested from the standpoint of the problem of the deaf-and-dumb, About this time also Professor Kratzunstein produced five vowel sounds synthetically with some denser of satisfaction. Kempelen who made a holby of building intriguing mechanisns proceded experimentally to set up mechanical equivalents of the parts of the human voca! system on a cut-and-try basis, He parts of the hellows for the lungs, a alit membrane for the glottes, a box with two variable cavities for the mouth and a set of controls for the virious
openings-lips, nostrils, and tongutepalate. With sume use of one hand for resonance effects lie fingered the keys to produce ant the consonant and vowel sontinds or approximations thereto. The quality was evidentally good enough for visiting observers to recognize a number of words, particularly Italian and French, Kempelen was this the first to produce a complete synthetic speech mechanism which be clescribed in delail in a book titled Afechnoismus der Mfenschlichen Sprache nebst der Beschreibung seiner sprechenden Mraschine publisherl in 1791. For general interest the oral presentation witl include other early sjeech-producing machines.
13. The Effect of Room Characteristics upon Vocal Intensity and Rate, Joun WV, BLAck, Kenyon College, Gambier, Ohio (15 min .).-Groups of 23 males read 12 test phrases in each of eight roons. The rooms represented two sizes, shapes, and reverberation times, Microphones hed to two meters that registered vocal intensity and, in one instance, duration of the plarases. Each set of measurements was treated by analysis of variance. Both rate nad intensity of reading were affected by the size and reverberation tine of the room and not by the shape, Rate was significantly slower in the larger and the less reverberant rooms. Apparently vocat intensity was greater in the smaller and less reverberant rooms; and readers consistently incraased their intensity as they read the 12 phrases in the less reverberant rooms. Differences in this regard, nceasioned by the sound treathent of the rooms, wure highly significant.
14. Musical Scales and Thelr Classification. J. Murmay Mamour, MFichigan State College, East Lansing, Michigan (10 min.), $-A$ musical scale fo a scquence of musical intervals in a certain range, such as an octave; a mode is a cyclic permutation of a scale; a lisey ia a mode at a certain pitchlevel; a raga is a melocic pattern of a key. Most writers, confusing scales and modes, hatve listed fewer than $\&$ the possible scales. The older writers, such as Delezenne, Gandillot, Ellis, and Hatherly, were further limited by harmonic considerations, Sloninsky's 1330 scales and melodic patterns (19-47) are mostly ragas, ill which as with Schillinger (19, 6), symmetry is paramount; Slonimsky's pentatonic and heptatonic seales are actually modes. The inverse of a scale contains the sime intervals in reverse order. The complement of a scale contains alt the notes of an sectave not in the scale jtself. A scale may be measured by the total nean-syuare deviation of all its intervals, the index for complensentary pairs of seales differing by a constant. The notation of a heptatonic scale as a harp scale (with seven tifferent letter names) agrees with the deviation index. However, the function of notes in the scale may of ten be expressed by fewer than seven letter names or by two names for the sime note.
15. Influence of Humidity on the Tuning of a Plano, Robert W. Young, San Diego, California (15 min.),-A sjxfoot grand piano has been studied for the change of its tuning with rulative bumidity, During more than a y'ear of olberva. tions in the livitg roon in which the piano is located, the relative bumidity varied between 20 and 70 percent. The change of tuning lagged the rise and fall of humidity as if the structure were characterized by a "dine constant" of the order of 15 days. The relative humitidity weighted according to this time conslant varied only between 35 and 62 percent. Within the three ceatral octaves, the huning of this 30 -year old piatno rose on the average 5 cents $(0.3$ percent in frequency) for each increase of 10 percent in weighted relative humidity. This rise would result if the sound board would swell enough to lift the bridge at the end of the $A_{1}(440 \mathrm{c} . \mathrm{p}, \mathrm{s}$. string 0.5 mm .
16. Twenty Years of Research In Phonological Blophyaics. C. H. Vobleker, Wrahington Collete, Chestertown, Afaryland (10 min.),-This interim report will emphasize the great number of books published which were of prime interest to the researcl worker in this speciality at the timu of the found. ing of the Acoustical Society of America, It will continue by outlining the development of the broader jssues with reference to the glotal source, labial coupling and give particular attention to the recently suggested liypothesis that the glotaljabial tube may be an acoustic filter.
17. Comparison of Performances of the Same Melody Playod in Solo and in Ensemble with Reference to Equal Tompered, Just, and Pythagorean Intonations. Jasars I. Nickursan, Uninersily of Kitnems (introduced by Armold M. Suall, Nivy Flectronics Latboratory, San Diego).-A sululy was matle of solo and ensemble performance of the same musical material as related to systens of intonation postulated

Joy certain acoustical, masical, and psychological theories. In particular, it wats desired to cleeck enrlier findings that unaccompanied performance and listener prefertaces approximate l'ythagorean intomation ${ }^{1,2}$ and to extend a sintitar line of investigation to ensemble performance, Solo and ensemble ferformances by 24 well-tained string guartet players were recorded from which stratifiet random simples of tones were ohtained for frequency analysis. This analysis was mude theotrgh the use of $16 \cdot \mathrm{~mm}$ somad-on-film loops with a cheromatic sirohoscope (Siraboconin). 'lle results confirm earlier fiadings for unaccompanied melodies and indicate that Pytlingorean intonation is also most typical of ensemble performance. This tendency appears to domithate any "cultaral conditioning" which may exist for erpual-iempered intonation.

Invited Papers

18. Acoustics in Communication, Dr, Ralpil Bown, Bell Telephone Laboratories.
19. Acou日tics in Comfort and Safety. Dr. Vern O. Knudsen, University of Colifomia at Los Angeles. 20, Acoustics and Modem Physics. Dr. Pimlir M. Morse, Mfassachiasetts Instiluie of Techotogy. 21. Acoustica in tho Atts. Dr, Habvey Fletcher, Bell Telephone Laboratories.

Papers Presented at Bell Telephone Laboratories, Murray Hill, New Jersey
22. Welcoming Address, Dr. Raliph ßown, Direcior of Research, hell Telephone Laboratories, 23. Demonstration I, ectures (Arnold Auditorium).
24. A. Fecent Rebearch on Barium Titanate Used us a Transducur Material. W. P. Mason, 25. B, Racent Studies of Transistors in Transducer Applications, R, L. Wiv. Nen, JR.
26. C. The Ring Armature Receiver-An Improved Trasisducer for Telephone Uso, W. C. Jonis. 27. D. Action Pjetures of Sound $-A$ Motion Picture Portrayal of Dynamic Spectra, R. C. Matires, 28. E. Methoda for Focusing, Guiding, and Refracting Sound Waves, Winston E. Fock.

Acoustics in Comfort and Safety

29. Invited paper ne lato L. Beranite, Atassachuselts Institule of Technology.

Contributed Papers

30. San Dlego County Fair Heating Survey, H. W. Hemes and J. C. Wenstre, Psycholagy Division, U. S, Navy Electronics Saboratory, San Diegn, California (15 min.).-A recorded hearing test similar in part to the Bell Telephone Laboratory's World's Fair 'rest was given at the San Diego County Fair. In addition to the absolute pure tone thresholds for the five-octave frequencies $4.40 \mathrm{c} . \mathrm{p} . \mathrm{s}$, through $70.10 \mathrm{c} . \mathrm{p}, \mathrm{s}$, it white noise makking threshold was found for 880 e.p.s. and 3520 c.p.s. A report wis made by each of the approximately 3700 participants as to age (within to year groupings), sex, munical training, noise cnviromment, and known hearing difficulty, Statistical breakdown of henring losses as a function of sex and age agreed in general with the earlier stady. Functlonal relationships indicate that (a) musicat training was negatively related to hearing loss especially with the older age groups, (b) noise environment was positively related to hearing loss at $3520 \mathrm{c}, \mathrm{p}, \mathrm{s}$. for males and (c) decliared (known) hearing difficulties correlate with actual hearing losses, Masked threshodld, in general, show trends similar to those of the atsolute thresholds in relationship to the above factors. However, these trends are not ay pronotnced as those shown by the alisolute thresholds. Sutbsequent analyses and work on matsked and absolute threshods on maval recruits will stupplement these residts.

31, The Sounds of Disease-Carrying Mosquitoes.* W, H. Ofyenhauser, Jr. and Morton C. Kain,** Department of Public Heallh and Preventiva Medicine, Cornell University Medical College, New York (15 mlin , ,--In the summer of 1047, the authors made recorlings of a number of apecies of native mosquitoes in West Africa. The equipnent used to make the mospuites in West Arica, The equipnent used to make the
recordings is described, and some of the records oltained are listed. In the summer of $19+8$, the authors went to Cubai where they recorded the sounds of the female Anophetes albimanus mospuito. The recordings were played lack in the Husillo Swamp there for the parpose of calling male mospuitoes of the sante sjxecies. Relatively large numbers of mosfuitoes were killed in the sound-baited trap. It is believed that this was the first time that a sound-baited trap has loeen used successfally for catching mosquitoes. Mosquito sounds are quite distinctive; gross difierences occur and are readily detected both by listening and by wave analysis. In general, male sounds seen higher pitehed than female; examination of sound spectrogram:s suggests that the difference ia due in considerable degree to the differences in harmonic emphasis. All fundamental sounds seem to occur in the center of the sonic range (from $300-1000 \mathrm{c} . \mathrm{p} . \mathrm{s}$.) ; all mosquito sounds are rich in harmonics. All mospuito sounds are warble-modulated; some at a single vibrato rate (in the order of $5 \mathrm{c} . \mathrm{p}, \mathrm{s}$.), others at a double rate (with the higher rate in the order of some 5 times the lower). In some tones, some harmonirs are rather completely interrupled or pulsed, while the fusdamental remains quite undisturbed, Warble anmplitutes are utally gutite large, The fumdamental pitch often drifts; in one case, for example, there was a 25 percent increase in fundattental piteh in as little as 0.05 sec. Generally speaking, mospuitoes do not
respond to sine-wave lones; this may explain why the tomes they generate are complex. Mosquito bounds are low in energy level. A rough measurement has been mate of the total samad power output of the insect whose somul was used for sound baiting the trap used in Cuba. The power wis in the order of 10^{-35} watt. With such a low power level, it is difficult to obtain bigh signaleto noise ratios as we know them in conventional high quality sound recording, Despite this, it has heen possible to turn out recordings frequently wils as much as 50.1 l signal-to-noise matio. The usiual operating nuisances of microphonics, hum induction, noise, and the like are encountered in aggravated form.

- Akled by a grast Grom the Tropleal Diseases Study Section, Unted
 rector di laraaltology,

32. The Acoustic Gallatone Detector, E, G. Tiruhston and Eric A. Walken, Ordnance hesearch Laboratory, The Pentisybtemia Stato College, State College, Penusytumia (15 min.) A serious problem during a gallatone operation is to determine if aff the atones lave been removed, and, if not, where they are located. They may be in the bile ducts, in the galt hatader, or even in the liver jtself. An alectro-acoustic instratment to ussist in this determination has been devised. It consists o! a very small transducer mounted on the ent of a blim metal rod. This is connected through a cable to a stambard amplifierloudspeaker system. The characteristics of the system are buch that when the dilator touches healthy tisstue no sound is emitted; but on striking a stone, a ringing sound is emitted. Another varintion of the probe uses a liakes dilator mounted in a handle containing the crystal. Still another variation which is being prepared is to be used for lociting kidney atones.
33. Univeraal Phonograph Styli. Joun D. Rn:id, Crosiey Division, Aveo Mitntufacturing Corporalion. The advent of "slow specd" records with small grooves has created mechanical problems in phonograph reproducers in that the needle size and in some cases the tane arm weight las to be ndjusted as well as the speed of rotation of the record. This leads to undue complexity of operation. Several solutions to the problem in the form of univershl styli which will fit both standard and small grooves will be presented and the relative merits of each compared.
34. Levels and Spectra of Noise In Industrial and Residontial Artak. G, L, l3onvad.ler, Armour Research Foumbation of Illinois Instilute of Technology, Chicago, Jlinoois (15 min.).At the Cleveland meeting of the Acoustical Society, in November, 1948 , some data were presented on the noise itn and near transportation vehicles. These were talien as pirt of the work on the Chicago Noise Survey. The survey inclules in vestigation of moise conditions in industrial zones and in residential areas, and some data on these now are available. These consist of over-all noise taken with a sound level meter, and spectra taken by the use of an octave bund filter unit. The noise conditions vary with the season, and the data on induatrial boise, up to the present, were taken when fitetory doors, windows, and other openings were not open to the extent they are in warm weather. Further investigation will he made in this respect. It is difficult to interpret residential area noise levels since the noise sources may be traflic conditions rather than industrial noise, However, dita have been analyzed and the attempt has been made fo obtain meaningftil information. Slides of characteristic over-all and octave band levels will be presented. Study of the data indicate that the average spectrum is peaked below 300 c.p.s., and the soumd energy per cycle drops about 9 db per octave toward the ligh her frequencies,
35. Sound Tranamission of Walls With Known Receiving Roam Conditions, F. G. Trzank, I, G. Ramer, and J. Ancrih, Armour Rescarch Foundation of IMinois Institufa of Technoloky, Chicago, Illinais (15 min.),-1reviotts study of an improved somed transmision meatioring technigut at the Riverbank Acosestical Jenthoratories was reforted at the November, 19.48 meeting. This technigue was shown to have promise in meaturing properties of test walls instend of properties of the test walls plus the adjoining roome, Further study has alown that practical measurements caa be made which are directly related to the effective "impedance" of a test wall or pmol with random sound on the incident side. The random incident solnd is provided by the sombly field of the revertsention clamber, An exploration las been anade of the tratmaniated sound feld in a marrow room with hard walls except for a very absorbent wall opposite the test panel. Resthts are given which indlicate a fairly uniform energy fow from the test pancl to the absorbing wall. Ilse effect of Jigh Q eross modes, which do not greatly affect this energy flow, can be minimized by thut ute of velocity mimeroplones clirected toward the test panel. Since the area of the test panet is less than the cross-sectionial area of the room at which theasurements are made, a correction and be made. This is a function of fregutency since considerable beaming is found at the higher frequencies. Dy the use of pressure aicrophones to obtain an average sound pressure on the incident side of the test wall and velocity microphones in the transmitted soume field, chart recordings can loe made, giving incident pressure and transmitued velocity as a function of frequency. Eximples are silnown for several test wills, and also corves of effective wall imbatance versas frecturncy, in analysis of the prolonte error in these meaturamenis is given and compared with some of the errors in the older technigue.

36, Transient Sounda in Rooms. David Mintzer, Acoustics Jaboratory, Massachuselts Instilute of Technology, Cimbridge, Massachusetts (15 min.).--l'revious work on acoustical transienta, where the resalt is obtained by a Fourter analysis of the steady-state response of the system, has been considered by Morselis and Dolt. ${ }^{2}$ Their results are in tho form of a simman tion over rusomant modes, and da not give a simple picture of the effect of each reflection. The case of transients in one dimension (planc-waves) is solved late by applying the Laplace transform to the wave equation for the velocity potential, and to the houndary conditions. The boundary conditions assumed are a given particle-displacement at $x=0$ and a series resistance-inertiance-complance termination at x: $=1$. The transformed velocity potential is then expanded as a series, and the inverse transform is obtained in the form of a (finite) series of terms, tho nth term representing the effect of the n hh reflection from the termination. The san method is also applied to the case of a rectangular roan with a point source arbitrarily located in it and each wall latving an arbitrary impedance, By using plane-wave expansions around jange points we may solve the transformed wave equation in the form of a series of integrals, which are then approximated. The inverse transform is then taken, and the velocity potential is obtained as at summation over the reflections between the walls of the room. The oral presentation of this paper will be confined to a brief description of the method and to graplical presentation of the results.

 16, 69 (1944).

37, Some Practical Problems Involved in a Study of the Industrial Noise Problem, Ralifil Mabtin McGratit.Medical authorities all agree that the noise problem is serious How serious it is for a given industry can only be ascertained by a properly conducted noise survey whinh will give data on
the noise levels to which its industrial workers are subjected and an audjometric surves which will give data on the heariog acuity of workers subjected to such enviromments. Noise level meters, filter sets and analyzers, and andiometers are available with which to condtuct these surveys. 'here is need for standardization in the metlodis by which the two surveys are conducted and interpreted. There is need, also, for data on how the adverse effects of noise tupon persomel in turn affect the quality of the product, labor turnover, alasentecisin, accidents, and compensation clains. Industry, conironted with a serious problem, canmot wait for elaborate refintanent of data but must act with the data avadable. Fortunately, industries all
over the country are acting and the steps lecing taken are reviewed. More hefore and after studies are needed to help others tackle their problems. The sheps taken at Iawtharne are summarized with a brief review of the fundamental theoretical jrolalems involved in compensation claias. The role that the Aconsticil Society of Anerica can play in coordinating whe eflorts of all organizations interested in assisthy industry to solve the nolse problent is ontlined briefly.
38. Method of Calculating Hearing Loss for Speech from an Audiogram, Haryis Fintrenek, Bell Telephone Laboratories Murray IIIl, Net Jersey.

Acoustics in Research

39. Invited paper liv Ciarl.es Kittil., Bell Triephome Lahornduries.

Contributed Papers

40. Proposed Acoustic System for Ordnance Regeatch Laboratory Water Tumnel. Paul. M. Kenmg, Ordmance Rrsearch Laboratory, The Pennsylvaniat State College, State College, lemusydunia (15 min.).-A description is given of the acoustic methods und equipment for detecting and locating sotrces of cavitation on underwater bodies and propellers (under teat) in the high speed water tumel now under construction at dic Ordnance Research Latboratory at the Pennsylvania State College. Sound arising inside the tunnel will pass through an acoustically transparent window to an external tank in which is placed a small piezoelectric crystal hydrophone at the focus of an ellipsoidal retlector. The source of sound can thus he located because the hydrophone is most sensitive to saunds originating at the cosijugate focus of the ellipsoid which is inside the tutnel. The reflector and hydrophone assembly las three degrees of freedom.
41. Acoustic Filter for Water Filled Pipeb. R. M. Hloov: D. Laird, and L. N. AIthere, Ordnance Research Labopadory, The Pennsyloania Siate College, Stato College, Pembsyleania (15 min.).-It is anticipated that sone of the alusiliary equip. ment to be used in conjunction with the new water tunnel under construction at the Pennsylvania State College will be particularly noisy in the ultrasonic frequency region where certain low level acoustic neasurements are to be made. This potentially noisy equipment inclutes such items as a deaerator, an energy dissipator, and a pressure conirol system which art located in a water loon, external to the main tumnel section. To effectively isolate this loop acoustically from the remainder of the tunsel where the aconstic mensurements will be made, it has been considered desirable to design an aconstic filter which can be inserted at the junctions of the loop with the tumel, This filter should serve the multiple function of reducing the sotmd transmision throught the pipe wills anal through the water in the pipes while permitting the passange of relatively harge volumes of water at smbill loss of pressure. The problern of isolation in the pipe path is a fairly comumon one and essentially requires the use of sotnd attenuating gasket material. However, the isolation of the water path is - more complex in that water must be allowed to flow white sombl is attenuated. In this case a honey-combed structure of a pressure release materint is used. This paper discusses the hydraulic consideration of the problem and presents the results of acoustic transmission measurements on the filter components. The measurements include: 1. The frequency characteristics of the neasstic filter under free field conditions, 2. The transumission properties of the isolating gaskets monated
in the pipe flankes, and 3. The effective response of the filter and isolation gaskets conthined.
42. The Properties of Gaseous Solutions as Revealed by Acoustic Cuvitation Measurements.* F, G. Bi.skr, Jit, Iharard Unicersily, Cambridge, Massachusetts (15 min.).That very small gas bubbles can serve as auclei for the formation of cavities in liguids is well established. That experimental observations on the rupture of liquids can be interpreted only on this basis is perhaps not so obvious but nome the less true, In the present series of experimenta on acoustic cavitation in water, two distinct aypes of bublse formation oceur. One, the violent formation aud collapse of vapor-illed cavities, results from mechanical instability of gas nuclei. The other, relatively quiet gas bubble formation, occurs as a consequence of the slow growth of nuelei by "rectified" diffusion of dissolved gas frum the surrounding liquid. Each process has a threstold of excitation by a solud field; which has the lower threshold in any given case depends largely upon the concentration of dissolved gas in the liquid. Measurements of the acoustic cavitation thereshold in conventionally "deaterated" water, as a function of temperature and ambient hydrostatic pressure, reveal how the equilitrium size of gats mated depands :pon these variables. Olservations on sonically iatuced effervescence: in sithmater! solations provide at leatit a qualitative explanation for the polse length and viscosity effects observed elsewhere. Cavitation at the marface of at sotmd projector apparently is profomilly affected loy atdsurbel gases. The conclusion that gisedus muclei exist mare or less in equilibrium with solutions not supersaturated with gas is contrary to the conventinam theory of gaseous solutions. Stabilization of muclei in the surface cracks of suspended solid particles is a yery plausible but not entirely eatiafactory explanation. Revision of the theory is a temptien subject for speculation.
${ }^{*}$ That work wat hupported lu patt by the ONK nader Project Orider X of Contruct NSuri-76.
43. The Ripple Tank as a Device for Studying Wave Propagation.* $11, \mathrm{D}$. RIX, ${ }^{\text {hhysics Department, The Pentsy. }}$ sunia State College, State College, Pennsylunnia (15 min.).The ripple tank has proven to be a useful instrument for studying wave propagation, particulatly wave patterns arising from indomogeneites in the medium. We lave built a tank 3 ft . by 2 ft . in which we prodece ripples in tap water with a mechanically triven vibrator consisting of a strip of plate ghass, The wave field is observed directly or photographed by theans of stroboscopic illamination, the wave cresis inctiny as leases to foeus the transmitted light in a plane at a convenient height alove the water surface. Refraction, interference, and diffraction effects are proluced with the help of obstacles made of glass or plastic. Both phase and amplitete measure-
ments are possible to a fair degree of accuracy. Good agree ment has been found with the calctilated ncoustic field re sulting from transmission of plane waves through a vertical cylinder of warm nir. We lave been able to simulate rather closely in the ripple tank the radiation fied experimentally olserved in air above a high frequency piston source a few observed in air above a high frequency piston somece a few
wave-lengths in diameter. The ease with which ceriatin types wave-leagths in diameter. The ense with which certain types
of acoustic field, for which no spectic theory exists or which of acoustic field, for which mo spectic theory exists or which would be difficult to measure directly, can be simmated and observed makes the tank an important research tool in the acoustics laborntory
 Army Stemal Corm linulacerian Lalooratories, Iratley Beaclo. New Jerney
44. A New High Speed Inkless Recorder, A. W. Nimanns and L. P. Reitz, Sound Apporalus Compiny, Slirling, New Jersey (15 min.), $-\lambda$ portable instrument is described for recording level changes or low frepuency wave forms on a 2-inch wide strip chart. A novel servo system, employing a power driven stylus, is utilized, giving a greater force-10-mass ratio than has heretofore been possible. Necordisg speeds in excess of 1000 dlb per second on a logarithmic dh scale are attainable, with a continuotsly variable stylus-speed control. A novel feed-back loop used in conjunction with antithnt circtits makes possible very mpid siylus movement insuring maximum necuracy and stability. Eight synclifonous chart speeds from 1 to $200 \mathrm{~mm} /$ wec. are push-lutton selecterl for accurate time axis recording, A take-up chart spindje is jrovided for continuous recording. Especially designed for acoustic reveriocration studies, it provides accurate means for investigating low reverberint chambers of 0.1 seconsl, and less, reverberntion time.
45. The Present Status of Piezoblectric Transducer Crystals. Hans Jarfir, Tho Brish Development Company, Clevohand, Ohio (15 min.),-The piezoclectric characteristics of transtlucer crybits may be expressed in terms of electromechanical coupling coefficient, mechanical compliance coeflicient, aud djelectric constant, all reforiong to the mode to be applied, and the density. The modes considered are face slacat (utilized in the torque "Bimorph"), lateral expransion, thichness expansion, and thickness shear. Properties not readily expressed in circuit terms but of the highest practical impor. Lance are dielectric and mechanical strength and permissible temperature rise. Rochelle salt offers a coupling coeflicient of 0.5 or more, combined with fairly high mechanical compliance and high dielectric constant for face sluar and lateral expinsion. Quartz combines is mather low coupling of about 0.1 with low electric conipliance; these factors are disindvantageous for most transducerapplicationa but any be outweighed by excellent stability. The newer crystals, anmonium dibydrogen phosphate ($A D P$) and lithium sulfate monohydrate ($\mathrm{H} H$), combine fair stability against atmosplueric conditions with intermediate dielectric constant and couplinga about 0.3 , the former for face slowe and hateral expansion, the latter for
thickness and volume expansion. Neutrial potassium tartriate (DだT) in face shear or lateril expansion is indicated for transducer uses requiring fairly high coupling, up to 0.25, with a low tenperature coefficient of respmant frequency. lolarized barinn thanate coranic takes its place besides the single cryatals. It combines low mechanical comptance and very high dielectric constant with coupling of 0,20 for the interal expansion and 0.45 for the thicliness expansion. It miay be slaped into curved trinsilucer elements, A comparalive table for these and some other suhstances will be given.
46. Scattering of Ultrasonic Waves in Water by Cylindrical Llquad Filled Obstacles.* ['aul T'amarkin, Brown University, Providente, Nhode Ishad (Introduced by J, B. Lindsay) (15 min.).-The scatteriag of an usderwater ultonsonic beant from effectively infinitely lomg cylindrical lifuid fitied olstacles is studied. The wave-length of the ratiation uned is 1.3 mm and the olstacle diameter is 13 mm , thus placing this type of seattering between the extremes of scattering from obstacles large compared with the wave-length, and scattering fron very suail obstacles. In a previous paper** the cobstacles stadjed were air and steel, aflording the two extrenjes of pe mismateh, and the scatering wis fontad to le a diffraction phenomenon. The present commanication describes the scattering patterns produced by it cylinder of methylalcolol, the first of a series of fiquids used todetermine the type of sattering (i,t,, diftraction, refraction, or conminations) produced, as the ρc of the obstacle is varied slowly from valises smatler, to values greater thin that of water.
 (10.14).
47. Absorption Mcasurements in Magnesium Sulfate,* R. 'T. Bifyen, M1. C. Smutia, and R. Bakriett, Hroten University
 for dilute water solutions of $\mathrm{M}_{6} \mathrm{SO}_{4}$. For frequencies in the ramge 3 to 10 megicecles, the measurements are made hy measuring the rectified autjut of a crystal inetector. Measuremente proportional to the acoustic intentity are made atong the axis of the radiated beatm, and the absorntion is calculated from formalas whiteh talise into account the spreading of the beam and the size of the microphone. In this commection, the necessary measmrentent of the wave-lengila of the radiation can be mate by use of the bjatial undulation of the acotestic sigmal
 in the range $10-30$ negacyeles are made with a conventional radiation pressire balance. Mensurements are reportal for various concentrationsant the different feepuencies, The values obtainel indicate an increats in the absorption coeflicient which is approximately linear with concentration.

- Work supgorted by tha ONK under contract No oti-315.
 :1.. W, Jabaw, J. ncomi Soc. Ans, 17, 14 (19,45).

Acoustics In Comfort and Safety

Contributed Papers

48. Techniques of Research Used in Quieting Machinery and Appliances, H. C. Harby, Armonr Resenrch foumblation of Illinois Institute of Technology, Chicajo, MINois (15 min.).As our age becomes more industrinlized, the problems of fuiseting machituey and appliances-whether they oceur in
industry, oftice or home-hecome more manerous and more dificult. The ecomomy of asing improved research methods atme competent scientific personnel is emphasized. Determinattion of qualitative data (soance of energy, source of radiation, relative spectral distribution, relative intensity of fresfuency peaks, etc.) is usually more important than spending excess fime obtaining quanitative diata (precios sirund intensity,
exact frequency spectram, percent harmonic content, etc.). The importance of analysis of sound energy sources, sounc radiation sources, and coupling factors between then will be emplasized. A sy'stem of analyzing nolse problems, by schematic diagrams giving the energy fow between sound energy sources antl the surrounding propigating thedium, will be outlined ant illustrated by actunl fata from typical researda problens.
49. Method for Quieting Rain Jet Motor Test Stations, W. B. Snow and C. J. 'T. Young, Kellex Corppration, 233 Broadway, New York, New York (15 min.). -The Applied Playsics Laboratory of Jchins Hopkins University, operating under contract with the Burean of Oriluance of the U. S. Navy, set up during the war a testing laboratory for ram jet motors at Forest Grove, Maryliud, a sliort distance outside of Washington, D. C., in a locationt surraunded by open country. Pastwar buidding in the neighborlood made it necessary to quiet this installation if oprration were in continue at the bame location antl the Fellex Cornoration undertook design of the revisions, Since very large volumes of air and lot gases had to enter and leave the test cells, it was mecessary to design a duct system which offered extremely low resistance to gas flow, but high attenuation to sombl. This paper gives a brief description of the resulaing construction which has allowed the Iaboratory to contime operation in the midst of a residential commonity.
50. Acouatic Absorption Coefficients at High Frequencies. Wiflitam S, Cramer, Nava! Ordmanec Imboratory', Whita Oak, Silver Spring, Maryland (15 min.). -The measurement of the acoustic absorption coefficient by a steady state method was carried out at frequencies of 9,20 , and 30 ke for seven ditterent materials. This involved the construction of a nound chamber with facilities for creating a diffuse sound field aud a sample area where materials could be mounted. The avertge intensity in the chamber was measured with the sample area covered with the material uuder test and the results compared with similar neasurenents when the area was covered successively with a material of negligible absorption and when it was open to the air outside. The expression giving the absorption coeflicient in terms of these three relative intensity readings is derived.
51. Tranamiagion of Reverberant Sound through Double Walls. Alabert Lonnon, National Burein of Standards, Washington, D. C. (15 mini.). -In a previous communication the transmisaign of reverberant sound through honggeneous single walls was investigated theoretically and experinentally. The attentation of an obliguely incident plane sound wave upon transmission through a single wall was computed and using the enstomary reverberant sound field statistics the attenuation was integrated over all angles of incidence to give the average tansmission loss. A similar teclaique is employed in this paper in studying the transmission of bound through a double wall consisting of two identical single walls. The mile terials comprising the double walts are the same ats was used in the single walls, i,e., adominum, plywood, and plasterboard. From the single wall experimental results, an expression for the wall impedance, Z_{w}, for each material, was determined, this expression containing erms which include the eftects of the mass, dissipation or resistance, and flextmal motion of the wall. This value of Z_{4} is usel in the double wall theory to compute the transmission Joss for a clouble wall. Good agrement wats obtained hetween theory and experinsent.

52. The Sound Absorption of Perforated Rigid Facings Dacked by Porous Materials, L. W, Sifminyer, U. S, Name Ordnance Test Station, Pasadena, California ano R, W. Lnkonard, University of Califormia at Los Angeles, Las Angeles, California (15 min.),-A chart for designing specialized absorption clanacteristics utilizing perforated rigid facings lancked by prous materials las bere preseated by R, H, Bolt in [J. Acous, Soc. Am. 19, 917 (1947)]. In order to check the validity of these charts, reverberation clamber measurements have been made on six different combinations comprised of three different gerforated facings and two different porous hacking materiala, The perforated facings were selected toyield natisinal alssorption in the range 300 to 2000 cyeles per sec. and the flow resistance of the backing materials differed by ajpproximately 10 to 1 . The resulis of these mensurements in comparison to the values predicted by the charts nod the neasured surface imgelance of the backing materjal will bus presented.
53. The First Symmetrical Mode of Vibration of a Conical Shell. H. C. Dando strmonr Reseurch Foumdation AND 13. S. Ramakrishina, IMinmis Institute of Technology, Chieago, Illinois (15 min.).-An aid in the design of loudspreakers would be a solution of the vibration of a conical shell. I'he general solntion is exceedingly coniplex, but a pirtial solution can be obtained for the lowest symmetrical modes, the ones which appear to be most important in londspeaker performance. The conical shell cin the considered to be tivided inte jolentical radial lanabat. The vibration is thus found to correspond to a beam whose width varies linearly with the distance from the apex, and whose atiffness varies inveraely no the stoune of the distance from the apex, The problem, therefore, reduces to a fourthorder differential equation. F'ower series solutions of this equintion are given in this paper. However, for the truncated conse the thecessity of using four boundiary conditions deads to very complicated endeulations to obtain the etgentones. A more convenient methon for obtaining the first symumetrical mode is the Rayleigh-Ritz methonl. For the free-free viloration, a simple function is found to fit the boumbury conditions. This luats easily to the calculation of the resonant frequency, Mchachan* bias measured the fundanental frequency of such a metallic cone obtaining 1000 c.p.g. for its first symmetrical mode. The calculated frequency, using the method outined above, is 3700 c.p.s. The lirst symmetrical mate in Inadspeakers occurs at 500 to 900 c.p.s, and is controlled greatly by the boundary condi. tions at the skiver, spider, and dust cip.
 (Oxford University [ress, New York, 1934],
54. The Acoustic Impedance of a Bubbly Mixture and the Determination of its Bubble Slzo Distribution Function. Norman Davins and E. G. 'Tuurston, Ordmance Reseirch Laboratory, The Pennsylvania State College, State Callege, Pennsyivania, - A atatistical method is developeal which ambles an analytital buble size distribution to be formatated from the rough size grouping usually obtained with practical methods of experimental olsiseration. This method is applied to data talien from photogriphs of bublily, turbulent witer. The resulting fusction is used witl certain known formulats for cvaluating the acoustic impodance of such a mixture, A brief plysical interpretation of the effects predicted by the theory is given.

Acoustics in Research

Contributed Papers

55. Kinetic Theory Equations for Sound in Gases, Hundy Harkison (10 min.). -By applying Enskog's first-order solution of Roltzmann's equation one can find kinetic theory analogs of Rayleigh's equations of continuity, momentum, and energy. By specializing these equations to one climention, one obtains equations describing the propagation of plane waves of artitrary amplitude. By furtler restricting these equations to arbitrary amplitude. By further restricting these equations of
small amplitude perturbations on a uniform medium one obtains a first-order wave equation, containing all loss effects, This kinetic theory equation is almost identical with the equation which Raylegh uses to discuss viscous losses alone. The heat flow losses which Rayleigh finds appear to tee the result of the rather artificial concept of heat conductivity used in the theory of contimuous nediat. A change to the kinetic theory equations would, apparently, increase the gap between theoretical and measured valies of sound attenuation in gases.
56. The Absorption and Scattering of Sound Power by a Microphone, Richard K, Cook, National Bureau of Standards, Washington, D, C,-Some yearsago Lamb determined the maximum power which can be scattered by small non-rigid objects (e.g., resonators, microphones, etc.) located in a plane wave. Recently Foldy las found that an omni-directional microphone located in a plane wave of wave-keng th λ transmits maximutm power equal to $(\lambda / / 4 \pi) \times$ the incitent plase wave intensity. This result is identical with that for an antenna picking up electromagnetic waves. This paper presents results showing the relation between the sound seattered and absorbed by several types of microphones which are small in comparison with the wave-length. Microphones located in plane waves near reflecting boundaries are included. The design of a microphone small in comparison with the wave-length for transmitting maximum power will be discussed.
57. An Ixperimental Study of the Velocities of Rayleigh and Lamb Waves.* J. R. Frumemick and A. E. Maktin, JR., Brown University, Providence, Rhole Jsland.-O Over the surface of a solid medium of infinite thickness Rayleiglt waves may be propagated. As the thickness of the medium approaches the order of magnitude of the wave-length of the vilurations Lamb waves' are produced. These may be either of a symmetric or antisymmetric type across the thickness of the material, and they travel with their own characteristic velocities denending on the ratio of wave-length to material thickness, Measurements of velocitics were made with an ultrasonic: reflectoscope by either using is single y^{\prime} cut quariz crystal to generate and receive pulses of the waven, or by using a separate receiving crystal. The frequencies used ranged from ant to 15 mblytcycles. Measurements are reported on a variety of solid materials and the results are compared with the theory.
*The wark reparted lu thin paper has heen supported lin part by the ONR inder Coniruct Na nil- $11 / 3,3$, 14 (1017).
58. Ultrasonic Radiation from an Idea! Piston Source, G. S, Heller, Brown Universily,-The Rayleigh formula for acous. tic radiation froman ideal piston source reduces, under suitable approxitnation given hulow, to the ordinary Fresnel integral approximation given helow, on the ortinary restion through a circular opening. The Fresuel integral is usually expreseed in a series of Bessel functions (Lommel function of two arguments) and reduces in the region of validity, to the correct solutionalong theaxis, to the Framhofer solution at large distances, and agrees with R. B, Lindsiy's solution on a cylinder based on the piston and coaxial with it. In this expansion, the first term represents the Fraunhofer
solution but all the terms of the series must be included io give the solution along the axis. An alternative expansion can be given in which the first term represents both the Fraunhofer solution at large distances and the soletion along the axis. This expmasion is mach easier to bandle for regions near the axis than the first. For a piston of radius a, these expansions are valid for points at a distance d from the center of the piston within a cone of half-angle 0 coaxial with the piston stch that $(a / d) \sin ^{2} \theta \ll \lambda / a$, where λ is the wave-lengeth, nad where $(a / k)^{*}<1, z$ being the distance along the axis from the center of the piston.
59. The Threshold of Hearing for Continuous and Interrupted Tones. Walibr A. Rosbenilitit and Grorge A Mithere, Psycho-A constic Laboratory, Harvard University (15 min.).-The quiet threshold of hearing for tones, as measured with earphones, shows large variations depending upon the method of presentation of the tones. When the tone is continuous the threshokd may be much higher than when the tone is interrupted. This difference is especially marked at high frepuencies. For both continuous and interrupted tones the thresholds were determined (1) by starting above threshold. and progressively decreasing the intensity, and (2) by starting below threshold and progressively increasing the intensity. With tones interrupted at slow rates the threshold for the descending series lies below the threstold for the ascending series. This is the ustal result obtained with this method. However, when the tones are continuous the descending threshotd may lis far above the ascending threshold depending upon the frequency, and the starting point for the descending series.
60. The Sonalator, A 29 Channel Viaible Speech Transtator, Harby R. Fostra and Elamo E. Cruab, Kiny Eifetric Comprony, Pino Brook, New Jersey.-A heterodyne type of visible specch translator bas been developed with 29 channels. This unit employs 29 separate crystal filters and a high speed rotary bam commutation tube. The heteroclyne feature makes it possible to explore any desired to0n-cycle batad, from 100 cycles up to several hundred kilocycles, hy changing the local oscillator crystal. The Sonalator also employs a fast-acting ave system and selective ligh freguency boost of the type found desimble by R. K. Totter and associates at bell Trelephone Laiboratories.
61. Extraction and Portrayal of Pitch in Speech Sounde, O. O. Gruenz and L. O. Schotr, Bell Telephnue Laboratories, Inci, Mfurray IIIl, New Jersey (15 min.),-An improved method for automatically extracting the pitch information of speech sounds has been devised. It employs a combination of gain control, toubte detection, voiced sound selection, unvoiced wand exclusion, and a means for comating the fundamental vibrations in the vaiced sound intervila. Reliable indications of pitch have been ohtained over a marge corresponding to frequencies from 100 to 600 cycles for a wide variety of voices. Several vishal portrayal means that have loen used to show piteh changes are described. One means involves a digplay of colored light which clanges from purple through a auber to Whe as the pitch increases. Another is in graphical form cmploying an array of staff-Jike lines whose spacings widen or natrow in contotr fashion to slow how the pitch varies with time, permitting a detailed study of the changes.
62. Electrical Stimulation of the Skin at Audio Frequencies, A. B. Anderson and IV. A. Munson, Bell Telephome Laboratories, Inc., Murray IIIll, Netw Jersey (15 min .).-This paper
reports the stojective responses of observers to alternating potentials applied directly to the surface of the shin. The curve of threstold of sensitivity was mensuta for frequencies from 100 to 10,000 cycles. The intensity rapore that conld be wied without extreme discomfort was also determined for this simue batad of frequencies. Intentity and frequency cifference linen tests indiented that frequency diserimimation is poor itn this frefuency mang lut intensity discrimination compares favorably with anditory resules,
63. X-Ray Study of Vibrating Crystal Plates. J. E, Wurne, Acoustics Laboratory, Mfassachusetts Institute of Trehnolege, Caubridge, dfassachusetts (15 minn.), -The ability of a perfect crystal to reflect x-rays is markedly enhanced by vibration, as has been reported by many writers. Measmements onstatically bent quartz are given which establiah a quantitative relationtship between increased reflectisg power and radins of beading, Several pictures show quartz plates in various mones of vibration, light nodal lines separating the dark zomes of maximum bending, Other types of vibrition are discussed.
64. Dispersion of Compressional Waves in Rods of Rectangular Cross Section.* R. IV. Mosse, Brown Unirepsity. (Introduced by R. B, Liudsay) (15 mini). --An earller japer [J. Acous. Soc. Am. 20, 833 (1048)] reported meaburements of the phase velocity of compressional waves as a function of freguency in rectangular rods where the cross-sectional dimensions are of comparable magnitude. Two modes of propagation were observed each being determined by one of the lateral were observed ench being determined by one of the ateral
dimensions, there being a discontinuity in the dispersion curve dimensions, there being a discontinnity in the dispersion curve
determined by the darger side. The present paper is an attempt determined by the larger side. The present paper is anditmpt
to explain the behavior of these curves using the general methods of the theory of elasticity applied to the syannetrical vibrations of an infinitely long isotropic rod, Himsonic wave sohations of the displacement equations of motion are constructed which satisfy the frec-sarface boundary conditions for certain wavedength regions in the gencral casw and for all wave-lengths in certain limiting confligurations, Disjersion curves are calculated and compared with the observed ones. The frequencies at which the experimental discontinuities were found to occur are closely predieted and the theoretical curves are in good general agreement with the meatsured values,

- Work auppartel by the ONR under Contract Noorl-215.

65. Obliqua Reflection and Refraction of Plane Shear Waves in Viscoolastlc Media. II. T. O'Nest, Dell Telephone Labaratories, Mfurray IIIll, New Jersey (15 nis.),-At sufficiently high frequencies, liquids exhibit both viscous aud elastic effects in shear. A recently developed method of measuring the shear elasticity and viscosity of tiquids involves utrasonic plane shear waves, generated in a fused guartz rod and reflected oblicuaely froma plane interfice of the quitrtz and the liquid, Comparing the effects observed in the presence and the inguid, Conparing the effects observed in the presence and
absence of the liguid, the change of amplitude ind plase of the reflected wave can be correlated with the shear wave parambters of the lifuith. The method has heen described in two recently published papers, ${ }^{1,2}$ Thais disemsision will be concerbed with some of the characteristies of the waves in the two merlia, which affect the theoretical relations involved in the reduction of the data. The waves in the quartz and in the tigutid are of different types; the refracted wave in the liquid las nonuniform amplitudes over the wave fronts.

66. Improved Devices for the Concentration of Ultrasonic Energy. Paul. J. ErNst, Department ar Physics, Villanmes College, Villanoty, Pennsytania (10 min), -The efliciency of
all existing tevices for the concentration of ulatatonic energy is considerably lowered lay the losses callse by reflection, alsnorption, atnd diffaction. These losses, though generally unavoidable, can be minimized in varions ways. The choice of suitable materials, use of "matching contiugs," design of "stepped tenses," and development of "acceleration platess" will be discussed, samples of the improved devices shown and mumeriend and experimental diata given.
67. A Procedonce Effect in Sound Localization. Hans Wablatele, Suturthemore College and E, B, Newman and M. R. Rostenzwedt, Harvard Unitersity,-cthe face that sotmels are lowalized in reverherant surroundings points ap a critical problen which has not been explored sulficiently. A brief description will be given of experiments we have done which demonstate that there is a precedence offect, whereby the first in line of a series of closely spaced smonels is the one which determines the place where ide sonand is heard. This demonstration of the importance of first arrivil makes clear how we are able to discount the ambiguous cltes from the reflected sontuds of an ordinary lard-walled room. Alore extended mensurements of the precedence effert have been made by syouthesiang a sound oat of four clicks arranged to give first one pair to the two ears representing one location, then a second pair to the ears representing a different location. Two parameters have been studied systematically, the interval between first pilir and second pair, and the temporal disparity of the second pais. Ald measurementa were made by varying the clisparity of the farst patir until the fused nomed appeared to be in the midelle of the heal. Resintes of these experthtents will be disctusted.
68. Some Determinants of Interaural Phase Effects. I. J. Hinsit and F. A, Whasiun, Isycho-itcoustic Laboratory, Warvard Unitresity,--Recently the binatral maskied threstold hats been shown to depend upon the phase angle between the two ears for thoth the masked sigmal ame the masking sigtal. These interatral phase effects are particularly chear for pure tones of fairly low frequency (100-800 c.p.s.) that are masked by white noise, It hat been alown that a pure tone, intophase at the two cars, that is presented against a batkground of white molse is more easily heard when the noise is ollt-of-phaso than when the noise is in -jhasent he cars. The converse is atso true, manely, that if the cone is ont-of-phase it is more casily heard when the nolse is in-phase. The masked threstiond of a 250 cyck tone prestmed against a backgronnd of noise (100 d) SPI. in a 7000 -cycle low pass liand) is approximately 1.5 (l) lower under antiplasic (tome-in, noise-out or inne-qut, noise-in) than under bomophatic (tone-in, noise-ins or tomeotat, nolseout) conditions, When the same tone is maskad by another tone whose frequency is fairly close but not close enough to probluce beats, no such differences aptenr. These two masking sipnals represent the extremes of a continumu of complexity along which the aecessary elaracteristics of the adequate stimulus for these differences should apperar. The present experiment constibites an attempt to find these characteristics, A pure tone at $250 \mathrm{c}, \mathrm{p}, \mathrm{s}$, was used as the sigual to be masked throughout the experiment. Four difterent kinds of masking siguals were used; pure tones, 'regular' pulses (125 p.p.s.). 'random' pulses (average $125 \mathrm{j} . \mathrm{j}, \mathrm{s}$.) and ramdon noise. The sibuals were presented in frequernes-bands which were varited in respect of band-widd and center frequency. The results indicate that a regular, periodic masking sigalal will not prodace these interatiral phase effects. A nectssary condition is randomness or irregalarity with respect to time but not necessarily with respect to amplitude. Frequency spectrum does not enter on any such all-or-mone basis but rather contributes in the magnitude of the response. I'lue nearer a frequency-land is to the frequency of the masked tone, we greater are the
differences between the homophasic and antiphasic conditions. There is no substantial difference between the interamrial phase effects produced by a narrow versus a wide land, provided that both batds contain the frequency of the masked tone.
69. Distortion of Acoustle Beam Patterns by Echoes and Electric Plek-Uf.* A, O. Wintiasts, Jr, W. Kikek, and M. C. Samtir, Drown Universily.-When the acoustic intensity is measured, in water, along the axis of in diverging ultrasonic beam, with a very small piezoelectric microphone as a receiver, the results plotted u, distance from the source follow only apse the results plotted es. distance irom the source follow only apre
proximately the beam pattern predicted by theory. On the steadily falling plot is superimposed a spatial variation repeating at halfowave-length intervals relatively near the source. Another variation sliows full wave-length intervals farther away, and there is a transition region between. These variations arc found with either CW or pulsed beams, if an averaging detector is used. The full wave-lenteth variation is due to electric pick-up and has previously been used to locate acoustic wave fronts. The other varintion cannot be a standing wave between bource and microphone, becanse successively reflected waves are too much weakencel by divergence, nor can it be due to standing waves in the whole tank. It seems to be the effect of the first echo returning to the microphone, compounding with the main atoustic and electric signals, and falling off much more rapidly than the electric pickup effect. Measurements and calculations in the $1-3$-me region agree with this explanation, and suggest haw to identify the correct
heam paitern from tha data. Without such corrections the determination of wave fronta at intermediate distumees might be markedly affected.

* Work supprorted In jart ly the ONR under Contract No orl-215 Task 3.

70. Intensity Distribution In Ultrasonic Beams.* WV. Kにck G. S. Mellekr, AND J. D. Nixon, Brown University,--A pulse method has been used to investigate the intensity distribution in the ultrasonic beam prosluced in water by vibratiag quartz crystals having disk- and ring-slaped electrodes, The plot of intensity us, angular position was oluserved directly on ant oscilloscope screen, Measurements were made it a frequency of ahout 1 nese sec. -1 . The intensity disuribution found for the disk agrees closely with theory and with results which lave been obtained by other methodg in this laboratory. Most of the encrgy is confued to a marrow cone with a small fraction of the energy appearing in side lobes which become practically negligible about 8 diameters from the source. For ring sources the intensity distribution is similar to that for a disk, However, the cone of the min beam becontes narrower as the ring is made thinmer, as predicted by Wiltimes, Veller and Hellens (J. Acous, Soc. Ann. 20, 583 (A) (1948)). In addition a larger fraction of the energy nypears in the side lobes, which are discernible at grenter distances from the source than in the case of the disk.

* Work mapmorted lit jart hy the QNR under contract No ori-215 task 3.

AUTHOR INDEX TO ABSTRACTS OF THE NEW YORK MEETING

Ancell, J.-ssec Tyzzer, F. G.
Andorson, A. B. and W. A. Munson-No, 62
Barbour, J. Murray-Mo. 14
Barrott, R,-see Beyer, R. T.
Bartholomew, Wilmer T,-No. 9
Deranels, Leo L. - No. 29
Boyer, R. T., M. C. Smlth, and R. Barrett-No. 47
Black, John W. -No, 13
Black, John W.-No, 13
Dlaise, J. G., Ir,-No. 42
Dlaite, J. G., Jr, -No. 42
Bonvallet, G. $\mathrm{L},-\mathrm{No}, 3.4$
Bonvatlet, G. L,-No, 3.4
Borst, Joln M.-sce Coope
Bown, Ralph-Nos. 18, 22
Cook, Reciatd K.-No. 56
Cooper, Tranklin S., John M. Borst, and Alvin M. LibermanNo, 11
Cramer, William S.-No. 50
Cunningham, W. J.-No. 3
Davids, Noman and E. G. Thurston-No. 5 - 4
Trnat, Paul J.-No. 66
Metcher, Harvey-Nos, 21, 38
Postor, Harry 1. and Elmo IE. Crump-No. 60
Trederich, J. R. and A. E. Martin, Jr, -No. 57
Gruenz, O. O. and L. O. Schott-No, 61
Hardy, H. C,-No. 48
Hardy, H. C, and B, S. Ramaterishna-No. 53
Hartia, J. Donald-No. 7
Harrison, Honry-No. 55
Heller, G. S,-No. 58
Hellar, ©. S,-see Keck, W,
Himes, H. W. and J. C. Webster-No. 30
Hirsel, I. J. and I. A. Webster-No. 68
Hoover, II. M., D. Latrd, und L. N. Millar-No. 41
Juffo, Hana-No. 45
Jones, W. C.-No. 26
Kahn, Morton C.-sec Offenhauser, W. H., Jr.
Keclt, W., G. S. Heller, and J. D, Nixon-No. 70
Keclt, W.-see Williams, A, O., Jr,
Kondig, Paul M.-No. 40
Kondig, Paul M,-No. ${ }^{\text {Kithel }}$
Knudsen, Vern O, No No, 19
Knudsen, Vern O,-No, 19
Kock, Winston E .-No, 28
Laitd, D,-ace Hoover, R. M.
Leonard, R. W. \rightarrow No. 6
Leomard, R. W.-see Sepmeyer, L. W.
Liberman, Avin M,-see Cooper, FrankliaS,
London, Albert-No. 51
McGrath, Ralph Martin-No. 37
Martin, A. E., Jr,-see Frederick, J. R.
Martin, Daniel W,-No. 8

Manon, W. P.-No. 24
Mathes, R. C.-Na. 27
Mawardl, Osman K.-No. 5
Meeker, Willard F, Franit H. Staymaker, and Lynn L. Murrill-No. 2
Merrill, Lymn L,-see Mecker, Willhrd F,
MHer, George A.-ste Rosenblith, Walter A.
Mitter, L, N,-see Hoover, R. At.
Milter, L, Na-sse Voover,
Mintzer, David-No. 36
Morse, Philip M.-No. 20
Morse, R. W.-No, Gi
Mungon, W. A.--see Ablerson, A. B.
Newman, E. B.-see Wallach, Hans
Nickerson, James F.-No. 17
Niemann, A. W, and L. P. Reitz-No. 44
Nixon, J. D,-sec Kech; W,
Offenhauser, W. H., Jr. and Morton C. Kahn-No. 31
Olison, Harry F,-No, 1
O^{\prime} Neil, H. T.-No, 65
Ramalcrishna, B. S.--sec Hardy, It, C.
Ramer, L. G.-see Tyzzer, F. G,
Reid, John D.--No. 33
Reltz, L. P.-see Nicmann, A, W.
Rix, H, D. -No. 43
Robin, Harry L.-No. 10
Robin, Harry L.-No. 10
Robenblith, Walter A. and Guorge A. Miller-No. 59
Rosenblith, Walter A.--see Foster, Hary R.
Rosenzweig, M. R, - see Wallach, Hans
Schott, L. O.-see Gruenz, O. O.
Sepmeyer, L. W. and R. W, Lennard-No. 52
Slaymalcer, Frank H.--see Meeker, Wilard F.
Smith, M,-see Willians, A. O., Jr.
Sinith, M. C.-see Beyer, R, T.,
Snow, W, B. and C. J. T. Young-No, 19
Stelnberg, J. C.-No. 2.3
Tamarkin, Paul-No, 46
Tarnoczy, T, H.-No. 12
Thurston, E, G, and Eric A. Walkor-No, 32
Thuraton, E. G.-see Davilla, Norman
Tiadale, Glem E.-No. 4
Tyzzer, F. G., L, G. Ramer, and J. Ancell-No. 35
Voellier, C. H.-No. 16
Walker, Eric A.--see Thburston, E. G.
Wallace, R, L., Jr.-No, 25
Wallach, Hans, E. B. Newman, and M, R. Rosenzwolg--No. 67
Webster, F. A,--sce Hirsh, I. J.
Webster, J. C.-see Himes, II. W.
White, J. E.,-No. 63
Willams, A, O., Jr.i W. Keck, and M. Smith-No, $69{ }^{\circ}$
Young, C. J. T.--see Snow, W, B,
Young, Robert W.-No, 15

The American Institute of Physics

INCORPORATED

57 East 55 Strect Now Yorls 22, N. X^{2}.

MEMAER SOCIETIIS:

Ametican Physical Socicty
Kaul K. Daunow, Secretary, Columbla University, New York 27, New York.
Optical Sociaty of America
Antuun C. Hanny, Secretary, Massacluseta Institute of Tecinology, Cambridge 30, Massachusetts.
Acoustical Society of America
Wallace Wateurall, Secrelary, 57 East 55th Street, New Yorle 22, New York.
Bacisty of Theology
Eant K. Fiscurn, Secretary, Institute of Textile Technology, EAat K. Firscrisi,
Ameritan Absociation of Phyales Teachera
R. F. Paton, Sccretary, Univernity of Illinois, Urbana, Illinois.

ATELLIATED SOCIETIES:

Ämorican Boclety for X-Ray and Itlectron Diffraction
Hilectron Microucope Saciety of America
Physical Society of Pltaburgh
Phystea Club of Chicago
Phyaict Club of Pisltadelphia
Cleveland Phyaics Soclety
Phymles Club of tha Lehlah Valley

ASSOCIATES:

Over seventy-five lending industrial enterprises and other institutions which contribute to the support of the Institute.

JOURNAZS:

Tha Physical Reviow
Jonn T. TATE, Editor, University of Minnesota, Mlaneapolis, Minnesota.
Review of Modern Phyalen
J. W. Bucrisa, Editor, University of Minnesota, Minneapolis, Minnesota.
Journal of the Optical Socicty of America
Gromer R. Hainison, Editor, Massachusetis Institute of Technology, Cambridge, Masanchusetts.
Tho Journal of tho Acousticnl Socicty of America .
Floyn A. Fiuserone, Editor, 3318 Feasenden Street, N.W., Wushlingtoh, D. C.
American Journal of Phymica
Thonas H. Osgood, Editor, Michlgan State College, East Lansing, artchigan.
The Review of Scientife Inatrumenta
GAyLoud P, Harnweil. Editor, Randal Morgan Laboratory of Phyaics, University of Pennsylvania, Philadelphia, Pennsylvania.
The Journal of Chemical Phyaica
Joserph E. Mayen, Editof, Kent Chemical Labaratory, University of Chicago, Chicago 37, Itlinoia,
Journal of Applied Phyuica
Elamesi Hutcinsson, Editor, Case Institute of Technology, Cleveland 6 , Ohio.
Phyalea Today
David A. Kíccien, Editor, American Inatitute of Physica, 57 East 55 Strect, New Yotlc 22, New Yorl,

ORFICERS

Grorge R. Hartison, Chairman Massachusetts Institute of Tcchnology
Wallace Waterpali, Secretary
The Celotex Corporation
George B. Pegranf, Treasurer Columbia University Join T. Tate, Adviser on Publicalions University of Minnesota
GOVERNING BOARD
Luis W. Alvatez
J. W. Beams

Wallace R, Brode
E. U. Condon
H. Fr. FAir, Jat

Garvex Flytchen
Grongr R. Hanuts
Paul Kizupaturcis
Paul E. Klorsted
F. W. Loomis

PMiLIP M, Mous
J. R:Orpenimiana

Geogez B. Pzemak
Harold K. Scmlling
Join Tr, Tate
Waliace Watrayall
M. W. Wirte
A. G. Woutilina

Consultant on Printing
Melyn Loos
ADMINISTRATIVE STAFE
Hzndy A. Barton, Director
Theonone Vonauncan, Business Manager Ruth F. Bryans, Publication Manager
Betty Hofstabter, Office Manager Eliern B. Nzunercea, Circulation Manager
MTHE American Institute of Physics was founded in 1931 as a federation of leading societies bines finto one operating ageney those functions on befalif of phengles those functions on beiral of physica Which can best be clone by the Societies fointly, is diturpose is the advancement and diffusion of pliylwelfare. To this end it publishes welfare journala listed on this page; projourmia listed on this pape; proeffort among all who are interested in physics; renders numeroua diredt services to phyaicigts and to the public; and cooperates with the pubin; and cooperales with government agencies, national as-
sociations, educational insltutiona sociations, educational insitututom,
technieal industries, and others in such manner'as to ralize the opsuch manner as to realize the opportuanities and fulinil the responaiand contructive human activity.

FRED MNTZ

This number of Tir Jovinal of tha Acoustical Socimty of Ambuca was lasued July 30, 1949

[^0]: 1/hys. Rev, 33, 81-110 (1911).

[^1]: ' Ribro, Fizgerald, and Hurdle, Phys, Rev, 72, 87 (19.17); R, A. Rapmano, M.I.'. Reneateh Lathoratory of Elecironics

[^2]: - Reference 2, p. 118; reference 3, p. 12.4,

[^3]: ${ }^{9}$ Reference 2, p. 215

[^4]: a A．R．Forsyth，at treatise on differential equations（Mac－ Mitian Company，Lid．，Lomlon，1914），p， 190.

[^5]: *This work is based on a report prepared at New York University under the gponsorship of the Cephlysical Research Directornte of the Cambridge Field Station, AAIC, U. S. Air Force, under Contract No. AF. $10(122)+2$.
 ${ }^{2} \mathrm{C}$. J. Bouwkamp, Dissertation, Groningen (1941).
 ${ }^{2}$ R, D, Sjence, J. Acous. Soc. An. 20, 380 (1948).
 ${ }^{2}$ Storruste and Wergeland, Phys, Rev, 73, 1937 (1948).
 1R. D. Spence, J. Acous, Soc. Am, 21, 98-100 (1949),
 FF. M. Wiener, J. Acous, Soc. Ann. 21, 39 (19:49), Additional material in procets of publication. Data reproduced by kind permission of author and Bell Telephone Lalpratories, Murray Hill New Jersey.
 ${ }^{1}$ L. J. Sivian and II. T. O'Neil, J, Acous, Soc. Am, 3, 48.3 (1932); Muller, Black, aud Divis, J. Acous, Soc. Ann. 10, 6 (1938).'

[^6]: * The experimental data in this study were obtained at the Paycho-Acnustic Laboratory, Haryard University, Cambridge, Dissinchusetis, under contrict with the ONR.
 bF. M, Wjener, J. Acous, Soc, Ant. 21, 39 (10.49),

[^7]: ${ }^{3}$ Stratton, Norse, Chu, and Hutner, Elliptic Cylinder and Spheroidal Wate Functions (John Wiley \& Sans, Inc., New York, 19.1).

 * See Appendix A.
 , G. Blanel, Anth. Tables, Nids Comp, 3, 90 (1948).
 A. Leither, Mathematics Researdi Groun, New York University, New York, N. I.

[^8]: ${ }^{5}$ L. J. Sivian and H. T. O'Neil, J. Acous, Soc, Am, 3, 183 (1932).
 © Aluller, Black, and Davis, J. Acous. Soc. Am, 10, 6 (1938).
 ** See Appendix 13 .
 ** H. 'I. O'Neil hats successfully performed similar calculations for the case of slightly curved surfaces.
 t Right cylinders of arbitrary cross aection may be ineluded here or the cast: of perpendicular incidence,
 1 F. M. Wiener, J. Acous. Soc. An, 19, 414 (19.47),

[^9]: - F. M. Wiener, J. Acous. Soc, Am. 20, 367 (1948).

[^10]: *'This researel was aided by the ONR Contratet No onr-2.5.5,

[^11]: ${ }^{2}$ Epstein, Andersen, and Harden, J. Acous, Soc. Am. 19, ${ }_{2}^{2}{ }^{2} 8-25.3$ (1047)
 $2 \cdot 18-25,3$ (1947). ${ }_{6}^{2}{ }^{2}$ Briggs (19.77).
 C. W. Willard, J. Acons, Suc. Am, 10, 773 (1047).
 G. F, Mutler and G. W. Willard, J. Acouts. Soc, Aun, 20, 589 (19.18).
 ${ }^{7}$ Louls Fein, J. Acous, Soc. Am, 20, 583 (10.48),
 ${ }^{2}$ L. WV. Jillow, J, Acous, Soc, Am, 16, 237-245 (194S).

[^12]: 10 R. W. Wood and L. Loomis, Phil. Mag, S74(2), 417-436 (1927).

[^13]: ** The size of the fog droplet leads to an excess pressure within the droplet of 1.4×10^{6} dynen $/ \mathrm{cm}^{2}$ becanse of sturfite tension. This is 10 times the value mentioned above. At first sight, one might hive nasumed fatat die radiation pressure must be at least as high as the exceris presistre in the droplets.

[^14]: *** In all measurements of bead deflection described in the following, the sereen mentioned in Section II was used to
 prevent any effect of nass flow,

[^15]: 'J. Greutzmacher, Zeisf. f, Physik 96,312 (1935). Or see Pp. 25-26 of reference (4).

[^16]: ${ }^{2}$ G. WV. Willard, J. Acons. Sis. Aı. 19, 733(A) (1947); 20, $580(\mathrm{~A})$ (1948).

[^17]: 'L. Bergman-H, S. Hatijetd, Ultrasomics (John Wiley and Sons. Inc., New York, 10,30).
 -These fenses were specially figured single acliromats. A better lens for this purpose is the several dement, Petzvai type, as is often used for movie projectors. These lenses and type, as is often used for movie projectors. These enises and
 the outside suffaces of the tinls windows thould le optically the outside blufaces of the tank window
 coated to cut down multiple reflections.

[^18]: *** For example: Concluctive Silver Paint No, 4817, E. I. nent, Perth Amhoy, New Jersey.

[^19]: ${ }^{7} \mathrm{H}, \mathrm{T}, \mathrm{O}$ Neil，J．Acons，Suc，Am，21， $60(\mathrm{~A})$（19．9），Coms－ pete maper to appers later．
 －1．，W．Lalkaw，I．Acouts．Sce，Am，16，2．37－2．15（19．15），
 ${ }^{-}$Loutis Fein，J．Acouts，Sinc．Ann， $20,58.3(\mathrm{~A})$（ 19.4 s ）．

[^20]: *** Kero intensity would just be reached at 30° out in the IY plathe, and at 'so ${ }^{\circ}$ obt in the . FZ plane, for at these angles rom the x axis in cllartz the y and zases occur for which orientations there is no effective piequelectric complang.

[^21]: lo Mefting in paraftin blocks have also been used to slow focusing, see Lynn, Zwemmer, Chick, and Miller, J, Gen, Plysiol. 26, 2 (1942).

[^22]: ${ }^{1}$ W. B, Masom, Bell Sys, Tech,], 22, 178-223 (19.13); or reference (11), 15. 1.35

[^23]: $\dagger \dagger$ The intestated radiation efficiency of the 5 - Alc radiator herein described (i.e, compared to a flat x cut radiator of the same area), was abont 50 percent when operated in the fundamental mocle.

[^24]: ${ }^{1}$ F. L. Hopwond, Some Properties of Inaudible Sound, Nature 128, 748 (1931), London; Ulirasonic letnses and Prisnls, J. Sci. Inst. 23, 63 (1946),
 ${ }^{1} \mathrm{~V}$. Bez-Bardilli, Uber ein Ultrasclaill Totalreflectometer zur Messung von Schallgeschwindigkeiten sowje der elastischen
 Koustanten fester Kurper, Zeits, I. Physik 96, 761 (1935).
 ${ }^{2}$ A. Gincomini, Alcuni Esperimenti di Otlica degli Ultrasuoni, Alta Fresuenza 7, 660 (1938),
 R. Pohman, Uber die Moglichate einer akustichen Abliddung in Analogie zur Optischen, Zeits. f. I'hysik 113, 607 (1038).

 1. Sci, Ernst, Utrasanic Lenses and Transmission Plates, J. Sci. lust. 22, 238 (1945).
[^25]: -This material, availabte under the name of Plexiglas, is mandactured in Italy by Soc. "Plexiglas," Milano.

[^26]: I.enses, J. Acous. Soc. din, 10, $47.4(\mathrm{j} 9 \mathrm{i} 7)$; in this paper, the ratio $V_{1} V_{1}$ appears, instead of V_{1} / V_{s}

[^27]: tR.S. Galew, "Auditory masking in nomar listening nystema" (to be publissied)
 ${ }^{3} \mathrm{H}$, Fletcher, Xev, Mod, Phys, 12, 17-65 (1940),
 H. Fletcher, J. Acous. Soc. Ant, 9,283 (1038), if (1937), Fig. 16.

[^28]: ${ }^{7}$ H. Nyquist, "Telegraph theory-Electrical erguvalent of the ear as a teceiver,' NDRC File 36f80-3(V) (Jatulary 13 , 1912),
 W, A. Musbon, J. Acous. Soc. An!. 19, 584, 591 (19.17), 'F. E. 'Terman, Radio Enginers' Madbonk (McGraw-itill Book Company, Inc., New York, 19.43), p. 137.

[^29]: *This research was carried out uncler Contmet NSori-166,
 Task Order I, between Special Devices Center, ONR, and Task Order I, between Special Deviecs Center, ONR, and
 The Johns Hopkins University. This is Report No. $166 \cdot \mathrm{t}$-88, Project Designation No, NR-784-001 under that contract.
 1H. C. Montgomery, "Influence of experinental teclaniguc on the measurement of differential intennity sensitivity of the on the J. Acous, Soc. Am, 7, 39-1,3 (I935).

[^30]: ${ }^{2}$ W. R. Garner, "The louidness of repented short tones,"

[^31]: ${ }^{4}$ R, R. Riesz, "Differential intensity sumsitivity of the car for pure tones, "' Ihys. Rev. 31, 8イ7-875 (1928).
 bifference linudsen, "The sensibility of the car to small differences in intensity and freguency," Phys, iRev. 21, 81-103
 (1923).

[^32]: Thurcher, King, and Davies, "The minimum perceptible edange of intensity of a pure tone," 1hin. Alag. $18,027-1939$ (1934).
 . Postman, "The time-error in atdiory pereeption," Am. J. Paychol. 59, 193-219 (19.16).
 PF. L. Dinmick anel R. M. Olsont, "The intensive difference limen in andition," $]$. Acous. Soc. Am. 12, $517-525$ (19.11).
 ${ }^{10} \mathrm{~J}$. D. Ifarris and C. K. Myers, "Intensity disicriminationt - 3 , Bureau of Medicine and Surgery Rest Proj, NMI-003-020 (19-18).

[^33]: "W. A. Nunson, "The growth of auditory sensation," J. Acous. Soc Am. 19, 58.1-501 (19:17)
 30, 115 (1920).

[^34]: ${ }^{1} \mathrm{H}$. Fletcher, Specth and Hearing, Chapter V, pp, 270-80.

[^35]: ${ }^{2}$ W. J. Humphreys, mhysics of tho Air (AtcGraw-Hill Company, Inc., New York, 1940), p. 414 .
 ${ }^{2} \mathrm{~J}$. W. S, Rayleigh, The Theory of Sound (MacMintan Campany, Ltal, London, 1896), po. $129-138$; F, J. W. Whipple, O. J., Roy, Meteor, Soc. $61,285-308$ (1935); P. Rothwell, J'. Acous. Soc. Am, 19, 205-221 (1947).
 pany, Londan, Lajd. 1806), Pheory of Sound (MacMillan Combpany, London, Ltd., 1896), pp. 129-138.

[^36]: ${ }^{4} \mathrm{~S}_{1}$ Jettersisen, Werther Analysis and Forerasting (McGrawHill Company, Juc., New York, 1910), pp. 50-85,
 SH, R, Dyers int R. R. Braltum, J. Aeteor. 5, 71-86 (19.18),

[^37]: * Part of a dissertation presented for the degree of Doctor of Philosophy in New York University,
 of Philosophy in New York University, 258 (1927).

[^38]: 4. J. Sivian, J. Acous, Soc. An. 9, 135 (1937).
[^39]: ${ }^{4}$ W. L. Everitt, Communication Enfincering (McGrawHill Bool Company, Inci, New York, 1937), p. 171 .

[^40]: т B, B. Baner, J. Acons, Soc, Am. 15, 223 (19.44),

[^41]: - This paper was presented at the Thiriy-Fourih Meeting of the Acoustical Society of Ameriea, December 12-13, 19:17, ** During the course of this research this atthor held a John Simon Gugbenlacin Fellowship and worked jointly at
 M.I.T, and Harvard University. 1.I.T, and Harvard University.
 *** Now at the Los Alamos Scientific Laboratory, Los Alamos, New Mexico.
 1 Nichols, Slecper, Wallace, and Ericson, J, Acous, Sac. Ant 19, 428 (1947).
 ${ }^{2}$ Wallace, Dienel, and Beranek, J. Acous, Soc, Am. 18, 246 (19.16)
 ${ }^{1}$ La. L. Beranck, J. Acous, Soc, Am. 19, 556 (1947).

[^42]: **** The word rayl was adopted in reference 3 as the unit for the ratio of sount pressure to linear particle velocity. In the e.g.s. system it symbolizes the units dyne-sec./cmi.

[^43]: \dagger Mr. H. F. Dienel, Cruft Laboratory, Harvard University, Now at the Bell ledephont Latoratories, Murray Ilill, New Now at

[^44]: ${ }^{4}$ L. I. Beranck and II. W, Rudmose, Trans. A.S.M.E. 69, 89-97 (10.77), L. D. Beranek and H. W. Rudnose, J. Acouri, Soc. Am. 19, 357 (1947). H. W. Ruthose and L. L. Deramek, Soc. Am. 19, 357 (1947). 1 .
 J. Aero. Sci. 14, 79 (1947).

[^45]: ${ }^{5}$ Alburt Lonton, "Transmission of reverberimt sound through single and double walls " mubunited to the International Symposimm on Noise, London, July 1048, To be published by the Physical Society of London together with other papers of the Symposiun.

[^46]: ${ }^{1}$ R. M, Morris and G. M. Nixon, "NBC atudio design," J. Acous. Soc. Am. 8, 81 (1936).

 A Alaxfeld, Colledge, and Friebus, "Pickup for sound motion pictures," J, Soc. Mot. Pict, Eng. 30, 666 (1938), ${ }^{2} \mathrm{C}$ C. Potwin, "Architectural acoustics," Archit. Forum, Seplember 1939.
 SH, M, Gurin and G. M, Nixon, "A review of criteria for broadcast studio design," J. Acous, Soc. Am. 19,40.4 (19.47).

